A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana

A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana The synthesis, modification, and breakdown of carbohydrates is one of the most fundamentally important reactions in nature. The structural and functional diversity of glycosides is mirrored by a vast array of enzymes involved in their synthesis (glycosyltransferases), modification (carbohydrate esterases) and breakdown (glycoside hydrolases and polysaccharide lyases). The importance of these processes is reflected in the dedication of 1–2% of an organism's genes to glycoside hydrolases and glycosyltransferases alone. In plants, these processes are of particular importance for cell-wall synthesis and expansion, starch metabolism, defence against pathogens, symbiosis and signalling. Here we present an analysis of over 730 open reading frames representing the two main classes of carbohydrate-active enzymes, glycoside hydrolases and glycosyltransferases, in the genome of Arabidopsis thaliana. The vast importance of these enzymes in cell-wall formation and degradation is revealed along with the unexpected dominance of pectin degradation in Arabidopsis, with at least 170 open-reading frames dedicated solely to this task. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/a-census-of-carbohydrate-active-enzymes-in-the-genome-of-arabidopsis-SO1ZqDm1dT
Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1010667012056
Publisher site
See Article on Publisher Site

Abstract

The synthesis, modification, and breakdown of carbohydrates is one of the most fundamentally important reactions in nature. The structural and functional diversity of glycosides is mirrored by a vast array of enzymes involved in their synthesis (glycosyltransferases), modification (carbohydrate esterases) and breakdown (glycoside hydrolases and polysaccharide lyases). The importance of these processes is reflected in the dedication of 1–2% of an organism's genes to glycoside hydrolases and glycosyltransferases alone. In plants, these processes are of particular importance for cell-wall synthesis and expansion, starch metabolism, defence against pathogens, symbiosis and signalling. Here we present an analysis of over 730 open reading frames representing the two main classes of carbohydrate-active enzymes, glycoside hydrolases and glycosyltransferases, in the genome of Arabidopsis thaliana. The vast importance of these enzymes in cell-wall formation and degradation is revealed along with the unexpected dominance of pectin degradation in Arabidopsis, with at least 170 open-reading frames dedicated solely to this task.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off