A cationic surfactant-induced selective etching strategy for the synthesis of organosilica hollow nanospheres

A cationic surfactant-induced selective etching strategy for the synthesis of organosilica hollow... The simple and effective synthesis of well-defined organosilica hollow nanospheres (OHNSs) for fundamental research and practical applications is still a significant challenge. In this work, a facile “cationic surfactant-induced selective etching” strategy was developed for the fabrication of hollow thiocyanatopropyl silsesquioxanes (thiocyanatopropyl-SQ), mercaptopropyl silsesquioxane (mercaptopropyl-SQ) from cyanoethyl-SQ@thiocyanatopropyl-SQ and cyanoethyl-SQ@mercaptopropyl-SQ, respectively. The experiments demonstrated that cetyltrimethylammonium bromide (CTAB) had remarkable influence on the formation of hollow structure and could accelerate the etching process significantly. A formation mechanism initiated by the adsorption of cationic surfactant followed by the etching of inner core with NH3·H2O was proposed. Hollow thiocyanatopropyl-SQ and mercaptopropyl-SQ with various shell thickness could be prepared by manipulating the amount of CTAB. And large-scale OHNSs were obtained at appropriate concentration of CTAB through this strategy. Moreover, this strategy might be further extended to fabricate OHNSs with other worthy functional groups. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Sol-Gel Science and Technology Springer Journals

A cationic surfactant-induced selective etching strategy for the synthesis of organosilica hollow nanospheres

Loading next page...
 
/lp/springer_journal/a-cationic-surfactant-induced-selective-etching-strategy-for-the-0r4sEwq6dL
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Inorganic Chemistry; Optical and Electronic Materials; Nanotechnology
ISSN
0928-0707
eISSN
1573-4846
D.O.I.
10.1007/s10971-018-4705-z
Publisher site
See Article on Publisher Site

Abstract

The simple and effective synthesis of well-defined organosilica hollow nanospheres (OHNSs) for fundamental research and practical applications is still a significant challenge. In this work, a facile “cationic surfactant-induced selective etching” strategy was developed for the fabrication of hollow thiocyanatopropyl silsesquioxanes (thiocyanatopropyl-SQ), mercaptopropyl silsesquioxane (mercaptopropyl-SQ) from cyanoethyl-SQ@thiocyanatopropyl-SQ and cyanoethyl-SQ@mercaptopropyl-SQ, respectively. The experiments demonstrated that cetyltrimethylammonium bromide (CTAB) had remarkable influence on the formation of hollow structure and could accelerate the etching process significantly. A formation mechanism initiated by the adsorption of cationic surfactant followed by the etching of inner core with NH3·H2O was proposed. Hollow thiocyanatopropyl-SQ and mercaptopropyl-SQ with various shell thickness could be prepared by manipulating the amount of CTAB. And large-scale OHNSs were obtained at appropriate concentration of CTAB through this strategy. Moreover, this strategy might be further extended to fabricate OHNSs with other worthy functional groups.

Journal

Journal of Sol-Gel Science and TechnologySpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off