Access the full text.
Sign up today, get DeepDyve free for 14 days.
This work examines a balancing problem wherein the objective is to minimize both the ergonomic risk dispersion between the set of workstations of a mixed-model assembly line and the risk level of the workstation with the greatest ergonomic factor. A greedy randomized adaptive search procedure (GRASP) procedure is proposed to achieve these two objectives simultaneously. This new procedure is compared against two mixed integer linear programs: the MILP-1 model that minimizes the maximum ergonomic risk of the assembly line and the MILP-2 model that minimizes the average deviation from ergonomic risks of the set of workstations on the line. The results from the case study based on the automotive sector indicate that the proposed GRASP procedure is a very competitive and promising tool for further research.
Progress in Artificial Intelligence – Springer Journals
Published: Jun 5, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.