A candidate mouse model for Hartnup Disorder deficient in neutral amino acid transport

A candidate mouse model for Hartnup Disorder deficient in neutral amino acid transport The mutant mouse strain HPH2 (hyperphenylalaninemia) was isolated after N-ethyl-N-nitrosourea (ENU) mutagenesis on the basis of delayed plasma clearance of an injected load of phenylalanine. Animals homozygous for the recessive hph2 mutation excrete elevated concentrations of many of the neutral amino acids in the urine, while plasma concentrations of these amino acids are normal. In contrast, mutant homozygotes excrete normal levels of glucose and phosphorus. These data suggest an amino acid transport defect in the mutant, confirmed in a small reduction in normalized values of 14C-labeled glutamine uptake by kidney cortex brush border membrane vesicles (BBMV). The hyperaminoaciduria pattern is very similar to that of Hartnup Disorder, a human amino acid transport defect. A subset of Hartnup Disorder cases also show niacin deficiency symptoms, which are thought to be multifactorially determined. Similarly, the HPH2 mouse exhibits a niacin-reversible syndrome that is modified by diet and by genetic background. Thus, HPH2 provides a candidate mouse model for the study of Hartnup Disorder, an amino acid transport deficiency and a multifactorial disease in the human. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A candidate mouse model for Hartnup Disorder deficient in neutral amino acid transport

Loading next page...
 
/lp/springer_journal/a-candidate-mouse-model-for-hartnup-disorder-deficient-in-neutral-r1e6gle004
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900367
Publisher site
See Article on Publisher Site

Abstract

The mutant mouse strain HPH2 (hyperphenylalaninemia) was isolated after N-ethyl-N-nitrosourea (ENU) mutagenesis on the basis of delayed plasma clearance of an injected load of phenylalanine. Animals homozygous for the recessive hph2 mutation excrete elevated concentrations of many of the neutral amino acids in the urine, while plasma concentrations of these amino acids are normal. In contrast, mutant homozygotes excrete normal levels of glucose and phosphorus. These data suggest an amino acid transport defect in the mutant, confirmed in a small reduction in normalized values of 14C-labeled glutamine uptake by kidney cortex brush border membrane vesicles (BBMV). The hyperaminoaciduria pattern is very similar to that of Hartnup Disorder, a human amino acid transport defect. A subset of Hartnup Disorder cases also show niacin deficiency symptoms, which are thought to be multifactorially determined. Similarly, the HPH2 mouse exhibits a niacin-reversible syndrome that is modified by diet and by genetic background. Thus, HPH2 provides a candidate mouse model for the study of Hartnup Disorder, an amino acid transport deficiency and a multifactorial disease in the human.

Journal

Mammalian GenomeSpringer Journals

Published: Mar 24, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off