A bench-top micro-CT capable of simulating head motions

A bench-top micro-CT capable of simulating head motions Computational three-dimensional (3D) models of a dental structure generated from 3D dental computed tomography (CT) images are now widely used in digital dentistry. To generate precise 3D models, high-resolution imaging of the dental structure with a dental CT is required. However, a small head motion of the patient during the dental CT scan could degrade the spatial resolution of CT images to the extent that digital dentistry is no longer possible. A bench-top micro-CT has been built to evaluate the head motion effects on the dental CT images. A micro-CT has been built on an optic table with a micro-focus x-ray source and a flat-panel detector. A rotation stage, placed in between the x-ray source and the detector, is mounted on two-directional goniometers that can rotate the rotation stage in two orthogonal directions while the rotation stage is performing the CT scan. The goniometers can make object motions of an arbitrary waveform to simulate head tilting or head nodding. CT images of a phantom have been taken with and without introducing the motions, and the motion effects on the CT images have been evaluated. Object motions parallel to the detector plane have greater effects on the CT images than those against the detector plane. With the bench-top micro-CT, the motion effects have been visually seen at a tiny rotational motion as small as 0.3°. The bench-top micro-CT can be used to evaluate head motion effects on the dental CT images. The projection data, taken with the motion effects, would be used to develop motion artifact correction methods for a high-resolution dental-CT. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Engineering Letters Springer Journals

A bench-top micro-CT capable of simulating head motions

Loading next page...
 
/lp/springer_journal/a-bench-top-micro-ct-capable-of-simulating-head-motions-XpCdQqQ2ot
Publisher
The Korean Society of Medical and Biological Engineering
Copyright
Copyright © 2017 by Korean Society of Medical and Biological Engineering and Springer
Subject
Engineering; Biomedical Engineering; Biological and Medical Physics, Biophysics; Biomedicine, general; Medical and Radiation Physics
ISSN
2093-9868
eISSN
2093-985X
D.O.I.
10.1007/s13534-017-0023-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial