A Basolateral Chloride Conductance in Rat Lingual Epithelium

A Basolateral Chloride Conductance in Rat Lingual Epithelium We used Ussing chamber measurements and whole-cell recordings to characterize a chloride conductance in rat lingual epithelium. Niflumic acid (NFA) and flufenamic acid (FFA), nonsteroidal anti-inflammatory aromatic compounds known to inhibit Cl− conductances in other tissues, reduced transepithelial short-circuit current (I sc ) in the intact dorsal anterior rat tongue epithelium when added from the serosal side, and reduced whole-cell currents in rat fungiform taste cells. In both Ussing chamber and patch-clamp experiments, the effect of NFA was mimicked by replacement of bath Cl− with methanesulfonate or gluconate. In low Cl− bath solution, the effect of NFA on whole-cell current was reduced. Replacement of bath Ca2+ with Ba2+ reduced the whole-cell Cl− current. We conclude that a Ca2+-activated Cl− conductance is likely present in the basolateral membrane of the rat lingual epithelium, and is present in the taste receptor cells from fungiform papillae. Further experiments will be required to identify the role of this conductance in taste transduction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Basolateral Chloride Conductance in Rat Lingual Epithelium

Loading next page...
 
/lp/springer_journal/a-basolateral-chloride-conductance-in-rat-lingual-epithelium-3HXuqe8v4O
Publisher
Springer Journals
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900396
Publisher site
See Article on Publisher Site

Abstract

We used Ussing chamber measurements and whole-cell recordings to characterize a chloride conductance in rat lingual epithelium. Niflumic acid (NFA) and flufenamic acid (FFA), nonsteroidal anti-inflammatory aromatic compounds known to inhibit Cl− conductances in other tissues, reduced transepithelial short-circuit current (I sc ) in the intact dorsal anterior rat tongue epithelium when added from the serosal side, and reduced whole-cell currents in rat fungiform taste cells. In both Ussing chamber and patch-clamp experiments, the effect of NFA was mimicked by replacement of bath Cl− with methanesulfonate or gluconate. In low Cl− bath solution, the effect of NFA on whole-cell current was reduced. Replacement of bath Ca2+ with Ba2+ reduced the whole-cell Cl− current. We conclude that a Ca2+-activated Cl− conductance is likely present in the basolateral membrane of the rat lingual epithelium, and is present in the taste receptor cells from fungiform papillae. Further experiments will be required to identify the role of this conductance in taste transduction.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off