A Bandwidth Guaranteed Integrated Routing Algorithm in IP over WDM Optical Networks

A Bandwidth Guaranteed Integrated Routing Algorithm in IP over WDM Optical Networks In this paper, we have developed an integrated online algorithm for dynamic routing of bandwidth guaranteed label switched paths (LSPs) in IP-over-WDM optical networks. Traditionally, routing at an upper layer (e.g., IP layer) is independent of wavelength routing at the optical layer. Wavelength routing at the optical layer sets up a quasi-static logical topology which is then used at the IP layer for IP routing. The coarse-grain wavelength channels and the pre-determined virtual topologies with respect to some a priori assumed traffic distribution are barriers to efficient resource use and inflexible to changing traffic. We take into account the combined knowledge of resource and topology information at both IP and optical layers. With this added knowledge, an integrated routing approach may extract better network efficiencies, be more robust to changing traffic patterns at the IP layer than schemes that either use dynamic routing information at the IP layer or use a static wavelength topology only. LSP set-up requests are represented in terms of a pair of ingress and egress routers as well as its bandwidth requirement, and arrive one-by-one. There is no a priori knowledge regarding the arrivals and characteristics of future LSP set-up requests. Our proposed algorithm considers not only the importance of critical links, but also their relative importance to routing potential future LSP set-up requests by characterizing their normalized bandwidth contribution to routing future LSP requests with bandwidth requirements. Moreover, link residual bandwidth information that captures the link's capability of routing future LSPs is also incorporated into route calculation. Extensive simulation was conducted to study the performance of our proposed algorithm and to compare it with some existing ones, such as the integrated minimum hop routing algorithm and the maximum open capacity routing algorithm. Simulation results show that our proposed algorithm performs better than both routing algorithms in terms of the number of LSP set-up requests rejected and the total available bandwidth between router pairs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A Bandwidth Guaranteed Integrated Routing Algorithm in IP over WDM Optical Networks

Loading next page...
 
/lp/springer_journal/a-bandwidth-guaranteed-integrated-routing-algorithm-in-ip-over-wdm-009RV2w09j
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/A:1023088102754
Publisher site
See Article on Publisher Site

Abstract

In this paper, we have developed an integrated online algorithm for dynamic routing of bandwidth guaranteed label switched paths (LSPs) in IP-over-WDM optical networks. Traditionally, routing at an upper layer (e.g., IP layer) is independent of wavelength routing at the optical layer. Wavelength routing at the optical layer sets up a quasi-static logical topology which is then used at the IP layer for IP routing. The coarse-grain wavelength channels and the pre-determined virtual topologies with respect to some a priori assumed traffic distribution are barriers to efficient resource use and inflexible to changing traffic. We take into account the combined knowledge of resource and topology information at both IP and optical layers. With this added knowledge, an integrated routing approach may extract better network efficiencies, be more robust to changing traffic patterns at the IP layer than schemes that either use dynamic routing information at the IP layer or use a static wavelength topology only. LSP set-up requests are represented in terms of a pair of ingress and egress routers as well as its bandwidth requirement, and arrive one-by-one. There is no a priori knowledge regarding the arrivals and characteristics of future LSP set-up requests. Our proposed algorithm considers not only the importance of critical links, but also their relative importance to routing potential future LSP set-up requests by characterizing their normalized bandwidth contribution to routing future LSP requests with bandwidth requirements. Moreover, link residual bandwidth information that captures the link's capability of routing future LSPs is also incorporated into route calculation. Extensive simulation was conducted to study the performance of our proposed algorithm and to compare it with some existing ones, such as the integrated minimum hop routing algorithm and the maximum open capacity routing algorithm. Simulation results show that our proposed algorithm performs better than both routing algorithms in terms of the number of LSP set-up requests rejected and the total available bandwidth between router pairs.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off