A 90μW continuous-time front-end with 10b SAR-ADC for capacitive MEMS accelerometers

A 90μW continuous-time front-end with 10b SAR-ADC for capacitive MEMS accelerometers This paper presents a low power read-out front-end for 3-axis MEMS capacitive accelerometer. The front-end includes the analog preamplifier (to sense the signal coming from the MEMS) and a Successive-Approximation 10b A/D Converter, for digitalization and off-chip digital-signal-processing. Power minimization is achieved by using a continuous-time sensing preamplifier (i.e. constant-charge capacitance-to-voltage conversion) and SAR-ADC with bridge capacitive reduction. Preamplifier programmable in-band gain allows to accommodate different MEMS sensitivities. A very high-impedance MOS transistor is used for MEMS biasing, thus providing very low frequency (<1 Hz) AC coupling. In a 0.13 μm CMOS technology, the full channel consumes 90 μW from a single 1.2 V supply voltage, and achieves an equivalent 67.9 dBFull-Scale@SNR in [1 Hz–4 kHz] bandwidth by exploiting oversampling ratio. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analog Integrated Circuits and Signal Processing Springer Journals

A 90μW continuous-time front-end with 10b SAR-ADC for capacitive MEMS accelerometers

Loading next page...
 
/lp/springer_journal/a-90-w-continuous-time-front-end-with-10b-sar-adc-for-capacitive-mems-FxPypJYx4j
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Circuits and Systems; Electrical Engineering; Signal,Image and Speech Processing
ISSN
0925-1030
eISSN
1573-1979
D.O.I.
10.1007/s10470-017-1009-0
Publisher site
See Article on Publisher Site

Abstract

This paper presents a low power read-out front-end for 3-axis MEMS capacitive accelerometer. The front-end includes the analog preamplifier (to sense the signal coming from the MEMS) and a Successive-Approximation 10b A/D Converter, for digitalization and off-chip digital-signal-processing. Power minimization is achieved by using a continuous-time sensing preamplifier (i.e. constant-charge capacitance-to-voltage conversion) and SAR-ADC with bridge capacitive reduction. Preamplifier programmable in-band gain allows to accommodate different MEMS sensitivities. A very high-impedance MOS transistor is used for MEMS biasing, thus providing very low frequency (<1 Hz) AC coupling. In a 0.13 μm CMOS technology, the full channel consumes 90 μW from a single 1.2 V supply voltage, and achieves an equivalent 67.9 dBFull-Scale@SNR in [1 Hz–4 kHz] bandwidth by exploiting oversampling ratio.

Journal

Analog Integrated Circuits and Signal ProcessingSpringer Journals

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off