A 3D microfluidic perfusion system made from glass for multiparametric analysis of stimulus-secretioncoupling in pancreatic islets

A 3D microfluidic perfusion system made from glass for multiparametric analysis of... Microfluidic perfusion systems (MPS) are well suited to perform multiparametric measurements with small amounts of tissue to function as an Organ on Chip device (OOC). Such microphysiolgical characterization is particularly valuable in research on the stimulus-secretion-coupling of pancreatic islets. Pancreatic islets are fully functional competent mini-organs, which serve as fuel sensors and transduce metabolic activity into rates of hormone secretion. To enable the simultaneous measurement of fluorescence and oxygen consumption we designed a microfluidic perfusion system from borosilicate glass by 3D femtosecond laser ablation. Retention of islets was accomplished by a plain well design. The characteristics of flow and shear force in the microchannels and wells were simulated and compared with the measured exchange of the perfusion media. Distribution of latex beads, MIN6 cell pseudo islets and isolated mouse islets in the MPS was characterized in dependence of flow rate and well depth. Overall, the observations suggested that a sufficient retention of the islets at low shear stress, together with sufficient exchange of test medium, was achieved at a well depth of 300 μm and perfusion rates between 40 and 240 μl/min. This enabled multiparametric measurement of oxygen consumption, NAD(P)H autofluorescence, cytosolic Ca2+ concentration, and insulin secretion by isolated mouse islets. After appropriate correction for different lag times, kinetics of these processes could be compared. Such measurements permit a more precise insight into metabolic changes underlying the regulation of insulin secretion. Thus, rapid prototyping using laser ablation enables flexible adaption of borosilicate MPS designs to different demands of biomedical research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Microdevices Springer Journals

A 3D microfluidic perfusion system made from glass for multiparametric analysis of stimulus-secretioncoupling in pancreatic islets

Loading next page...
 
/lp/springer_journal/a-3d-microfluidic-perfusion-system-made-from-glass-for-multiparametric-plIq6Y94Qq
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Biomedical Engineering; Biological and Medical Physics, Biophysics; Nanotechnology; Engineering Fluid Dynamics
ISSN
1387-2176
eISSN
1572-8781
D.O.I.
10.1007/s10544-017-0186-z
Publisher site
See Article on Publisher Site

Abstract

Microfluidic perfusion systems (MPS) are well suited to perform multiparametric measurements with small amounts of tissue to function as an Organ on Chip device (OOC). Such microphysiolgical characterization is particularly valuable in research on the stimulus-secretion-coupling of pancreatic islets. Pancreatic islets are fully functional competent mini-organs, which serve as fuel sensors and transduce metabolic activity into rates of hormone secretion. To enable the simultaneous measurement of fluorescence and oxygen consumption we designed a microfluidic perfusion system from borosilicate glass by 3D femtosecond laser ablation. Retention of islets was accomplished by a plain well design. The characteristics of flow and shear force in the microchannels and wells were simulated and compared with the measured exchange of the perfusion media. Distribution of latex beads, MIN6 cell pseudo islets and isolated mouse islets in the MPS was characterized in dependence of flow rate and well depth. Overall, the observations suggested that a sufficient retention of the islets at low shear stress, together with sufficient exchange of test medium, was achieved at a well depth of 300 μm and perfusion rates between 40 and 240 μl/min. This enabled multiparametric measurement of oxygen consumption, NAD(P)H autofluorescence, cytosolic Ca2+ concentration, and insulin secretion by isolated mouse islets. After appropriate correction for different lag times, kinetics of these processes could be compared. Such measurements permit a more precise insight into metabolic changes underlying the regulation of insulin secretion. Thus, rapid prototyping using laser ablation enables flexible adaption of borosilicate MPS designs to different demands of biomedical research.

Journal

Biomedical MicrodevicesSpringer Journals

Published: May 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off