A 3D mesoscale damage-plasticity approach for masonry structures under cyclic loading

A 3D mesoscale damage-plasticity approach for masonry structures under cyclic loading This paper deals with the accurate modelling of unreinforced masonry (URM) behaviour using a 3D mesoscale description consisting of quadratic solid elements for masonry units combined with zero-thickness interface elements, the latter representing in a unified way the mortar and brick–mortar interfaces. A new constitutive model for the unified joint interfaces under cyclic loading is proposed. The model is based upon the combination of plasticity and damage. A multi-surface yield criterion in the stress domain governs the development of permanent plastic strains. Both strength and stiffness degradation are captured through the evolution of an anisotropic damage tensor, which is coupled to the plastic work produced. The restitution of normal stiffness in compression is taken into account by employing two separate damage variables for tension and compression in the normal direction. A simplified plastic yield surface is considered and the coupling of plasticity and damage is implemented in an efficient step by step approach for increased robustness. The computational cost of simulations performed using the mesoscale masonry description is reduced by employing a partitioning framework for parallel computation, which enables the application of the model at structural scale. Numerical results are compared against experimental data on realistic masonry components and structures subjected to monotonic and cyclic loading to show the ability of the proposed strategy to accurately capture the behaviour of URM under different types of loading. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meccanica Springer Journals

A 3D mesoscale damage-plasticity approach for masonry structures under cyclic loading

Loading next page...
 
/lp/springer_journal/a-3d-mesoscale-damage-plasticity-approach-for-masonry-structures-under-uzgmuquUHl
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0025-6455
eISSN
1572-9648
D.O.I.
10.1007/s11012-017-0793-z
Publisher site
See Article on Publisher Site

Abstract

This paper deals with the accurate modelling of unreinforced masonry (URM) behaviour using a 3D mesoscale description consisting of quadratic solid elements for masonry units combined with zero-thickness interface elements, the latter representing in a unified way the mortar and brick–mortar interfaces. A new constitutive model for the unified joint interfaces under cyclic loading is proposed. The model is based upon the combination of plasticity and damage. A multi-surface yield criterion in the stress domain governs the development of permanent plastic strains. Both strength and stiffness degradation are captured through the evolution of an anisotropic damage tensor, which is coupled to the plastic work produced. The restitution of normal stiffness in compression is taken into account by employing two separate damage variables for tension and compression in the normal direction. A simplified plastic yield surface is considered and the coupling of plasticity and damage is implemented in an efficient step by step approach for increased robustness. The computational cost of simulations performed using the mesoscale masonry description is reduced by employing a partitioning framework for parallel computation, which enables the application of the model at structural scale. Numerical results are compared against experimental data on realistic masonry components and structures subjected to monotonic and cyclic loading to show the ability of the proposed strategy to accurately capture the behaviour of URM under different types of loading.

Journal

MeccanicaSpringer Journals

Published: Nov 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off