A –308 deletion of the tomato LAP promoters is able to direct flower-specific and MeJA-induced expression in transgenic plants

A –308 deletion of the tomato LAP promoters is able to direct flower-specific and MeJA-induced... Tomato and potato leucine aminopeptidase (LAP) mRNAs are induced in response to mechanical wounding and the wound signal molecules, ABA and jasmonic acid. Here, we report the isolation of two LAP genes, LAP17.1A and LAP17.2, from tomato. Functional analysis in transgenic tomato and potato plants show that fusions of the corresponding 5′ non-coding regions to the gusA gene are constitutively expressed in flowers and induced in leaves upon wounding or by treatment with methyl jasmonate (MeJA). Comparison of the 5′ non-coding regions of the two genes revealed a region from –317 to –3 relative to the ATG, which is strongly conserved in both promoters. This 0.3 kb proximal promoter fragment is sufficient to direct flower-specific and MeJA-inducible GUS activity in transgenic potato plants, and thus contains a MeJA-responsive element that mediates induction by MeJA. Dimeric TGACG motifs or G-box elements similar to those found in other MeJA-inducible genes are not observed in this region, which suggests that a different DNA sequence is involved in MeJA induction of the LAP genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A –308 deletion of the tomato LAP promoters is able to direct flower-specific and MeJA-induced expression in transgenic plants

Loading next page...
 
/lp/springer_journal/a-308-deletion-of-the-tomato-lap-promoters-is-able-to-direct-flower-d7KrSXVfHr
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005980028203
Publisher site
See Article on Publisher Site

Abstract

Tomato and potato leucine aminopeptidase (LAP) mRNAs are induced in response to mechanical wounding and the wound signal molecules, ABA and jasmonic acid. Here, we report the isolation of two LAP genes, LAP17.1A and LAP17.2, from tomato. Functional analysis in transgenic tomato and potato plants show that fusions of the corresponding 5′ non-coding regions to the gusA gene are constitutively expressed in flowers and induced in leaves upon wounding or by treatment with methyl jasmonate (MeJA). Comparison of the 5′ non-coding regions of the two genes revealed a region from –317 to –3 relative to the ATG, which is strongly conserved in both promoters. This 0.3 kb proximal promoter fragment is sufficient to direct flower-specific and MeJA-inducible GUS activity in transgenic potato plants, and thus contains a MeJA-responsive element that mediates induction by MeJA. Dimeric TGACG motifs or G-box elements similar to those found in other MeJA-inducible genes are not observed in this region, which suggests that a different DNA sequence is involved in MeJA induction of the LAP genes.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off