A 2D covalent organic framework as a sensor for detecting formaldehyde

A 2D covalent organic framework as a sensor for detecting formaldehyde Formaldehyde is the main cause of indoor pollution. In this research, we investigated the mechanism that the covalent organic framework (COF) identifies formaldehyde applying density functional theory (DFT) and time-dependent (TD) DFT approaches. On one hand, the calculation results of the geometric parameters, IR spectra, as well as 1H-NMR chemical shifts for protons that associated with the hydrogen bonding formation together with the electronic transition energies verified that the furcate hydrogen bonding formed between the COF and formaldehyde is enhanced in the excited S1 state and it is not beneficial to luminescence of the COF. On the other hand, excitingly, our further calculation results of the fluorescence rate coefficients also revealed that the strengthened hydrogen bonding behavior in S1 state caused an efficiently weakened luminescent phenomenon compared with that of the COF. Therefore, this analysis method, which qualitative collaborates with quantitative theoretically, demonstrates the possibility that the COF could be served as a sensor to detect formaldehyde. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Modeling Springer Journals

A 2D covalent organic framework as a sensor for detecting formaldehyde

Loading next page...
 
/lp/springer_journal/a-2d-covalent-organic-framework-as-a-sensor-for-detecting-formaldehyde-TIwiBQsQyj
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry
ISSN
1610-2940
eISSN
0948-5023
D.O.I.
10.1007/s00894-018-3676-x
Publisher site
See Article on Publisher Site

Abstract

Formaldehyde is the main cause of indoor pollution. In this research, we investigated the mechanism that the covalent organic framework (COF) identifies formaldehyde applying density functional theory (DFT) and time-dependent (TD) DFT approaches. On one hand, the calculation results of the geometric parameters, IR spectra, as well as 1H-NMR chemical shifts for protons that associated with the hydrogen bonding formation together with the electronic transition energies verified that the furcate hydrogen bonding formed between the COF and formaldehyde is enhanced in the excited S1 state and it is not beneficial to luminescence of the COF. On the other hand, excitingly, our further calculation results of the fluorescence rate coefficients also revealed that the strengthened hydrogen bonding behavior in S1 state caused an efficiently weakened luminescent phenomenon compared with that of the COF. Therefore, this analysis method, which qualitative collaborates with quantitative theoretically, demonstrates the possibility that the COF could be served as a sensor to detect formaldehyde.

Journal

Journal of Molecular ModelingSpringer Journals

Published: Jun 7, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off