A 191-kb genomic fragment containing the human α-globin locus can rescue α-thalassemic mice

A 191-kb genomic fragment containing the human α-globin locus can rescue α-thalassemic mice A 191-kb human bacterial artificial chromosome (BAC) containing the human α-globin genomic locus was used to generate transgenic mice that express, exclusively, human α-globin (huα-globin). Expression of huα-globin reaches a level of 36% of that of endogenous mouse α-globin (muα-globin) on a heterozygous mouse α-thalassemia background (muα-globin knockout, muα+/−). Hemizygous transgenic mice carrying the huα-globin locus on a heterozygous knockout background (huα+/0, muα++/−−) demonstrated complementation of most hematologic parameters. By crossing huα+/0, muα++/−− mice, we were able to generate mice entirely dependent on huα-globin synthesis. Breeding and fluorescent in situ hybridization studies demonstrate that only mice homozygous for the transgene were able to rescue embryonic lethal homozygous muα-globin knockout embryos (muα−−/−−). Adult rescued mice produce hemoglobin at levels similar to wild-type mice, with partial red cell complementation based on mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and red cell distribution width (RDW) measurements. Significant erythrocythemia above wild-type levels seems to be the main compensatory mechanism for the normalization of the hemoglobin levels in the rescued animals. Our studies demonstrate that the huα-globin locus in the 191-kb transgene contains all the necessary elements for the regulated expression of huα-globin in transgenic mice. This animal model should be valuable for studying the mechanisms regulating huα-globin production and for development of therapeutic strategies for β-thalassemia based on downregulation of α-globin expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A 191-kb genomic fragment containing the human α-globin locus can rescue α-thalassemic mice

Loading next page...
Copyright © 2005 by Springer Science+Business Media, Inc.
Life Sciences; Anatomy; Cell Biology; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial