A 0.18 $$\upmu$$ μ m CMOS voltage multiplier arrangement for RF energy harvesting

A 0.18 $$\upmu$$ μ m CMOS voltage multiplier arrangement for RF energy harvesting This work presents a two-stage voltage multiplier (VM) useful in RF energy harvesting based applications. The proposed circuit is based on the conventional differential drive rectifier, in which the input RF signal has been level shifted using a simple arrangement. This signal is then used to drive the next stage, which has been formed by using gate cross-coupled transistors. As a result, the load driving capability of the proposed architecture increases. The load in this work has been emulated in terms of a parallel RC circuit. The architecture has been implemented using standard 0.18  $$\mu$$ μ m CMOS technology. The measurements of the two-stage conventional VM (CVM) and proposed VM circuits were performed at ISM frequencies 13.56, 433, 915 MHz and 2.4 GHz for R $$_L$$ L of values 1, 5, 10, 3 and 100 K $$\Omega$$ Ω with a fixed value of C $$_L$$ L equal to 20 pF. The performance evaluation has been done in terms of the power conversion efficiency (PCE) and average output DC voltage. The measured results show an improvement in PCE of 5% (minimum) for 13.56, 433 and 915 MHz frequencies, and up to 2% improvement for a frequency value of 2.4 GHz at the targeted load condition of 5 K $$\Omega ||$$ Ω | | 20 pF, when compared with the measured results of the CVM circuit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analog Integrated Circuits and Signal Processing Springer Journals

A 0.18 $$\upmu$$ μ m CMOS voltage multiplier arrangement for RF energy harvesting

Loading next page...
 
/lp/springer_journal/a-0-18-upmu-m-cmos-voltage-multiplier-arrangement-for-rf-energy-aGlkf2jfa5
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Circuits and Systems; Electrical Engineering; Signal,Image and Speech Processing
ISSN
0925-1030
eISSN
1573-1979
D.O.I.
10.1007/s10470-017-1001-8
Publisher site
See Article on Publisher Site

Abstract

This work presents a two-stage voltage multiplier (VM) useful in RF energy harvesting based applications. The proposed circuit is based on the conventional differential drive rectifier, in which the input RF signal has been level shifted using a simple arrangement. This signal is then used to drive the next stage, which has been formed by using gate cross-coupled transistors. As a result, the load driving capability of the proposed architecture increases. The load in this work has been emulated in terms of a parallel RC circuit. The architecture has been implemented using standard 0.18  $$\mu$$ μ m CMOS technology. The measurements of the two-stage conventional VM (CVM) and proposed VM circuits were performed at ISM frequencies 13.56, 433, 915 MHz and 2.4 GHz for R $$_L$$ L of values 1, 5, 10, 3 and 100 K $$\Omega$$ Ω with a fixed value of C $$_L$$ L equal to 20 pF. The performance evaluation has been done in terms of the power conversion efficiency (PCE) and average output DC voltage. The measured results show an improvement in PCE of 5% (minimum) for 13.56, 433 and 915 MHz frequencies, and up to 2% improvement for a frequency value of 2.4 GHz at the targeted load condition of 5 K $$\Omega ||$$ Ω | | 20 pF, when compared with the measured results of the CVM circuit.

Journal

Analog Integrated Circuits and Signal ProcessingSpringer Journals

Published: Jun 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off