3D Spheroids’ Sensitivity to Electric Field Pulses Depends on Their Size

3D Spheroids’ Sensitivity to Electric Field Pulses Depends on Their Size Dramatic differences of cells behavior exist between cells cultured under classical 2D monolayers and 3D models, the latter being closer to in vivo responses. Thus, many 3D cell culture models have been developed. Among them, multicellular tumor spheroid appears as a nice and easy-to-handle 3D model based on cell adhesion properties. It is composed of one or several cell types and is widely used to address carcinogenesis, or drugs screening. A few and recent publications report the use of spheroids to investigate electropermeabilization process. We studied the response of spheroids to electrical field pulses (EP) in terms of their age, diameter or formation technique. We found that small human HCT-116 colorectal spheroids are more sensitive to electric field pulses than larger ones. Indeed, the growth of spheroids with a diameter of 300 μm decreased by a factor 2 over 4 days when submitted to EP (8 pulses, lasting 100 μs at a 1,300 V/cm field intensity). Under those electrical conditions, 650 μm spheroids were not affected. These data were the same whatever the formation method (i.e. hanging drop and nonadherent techniques). These observations point out the fact that characteristics of 3D cell models have to be taken into account to avoid biased conclusions of experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

3D Spheroids’ Sensitivity to Electric Field Pulses Depends on Their Size

Loading next page...
 
/lp/springer_journal/3d-spheroids-sensitivity-to-electric-field-pulses-depends-on-their-UKVQI9yEUl
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-013-9535-x
Publisher site
See Article on Publisher Site

Abstract

Dramatic differences of cells behavior exist between cells cultured under classical 2D monolayers and 3D models, the latter being closer to in vivo responses. Thus, many 3D cell culture models have been developed. Among them, multicellular tumor spheroid appears as a nice and easy-to-handle 3D model based on cell adhesion properties. It is composed of one or several cell types and is widely used to address carcinogenesis, or drugs screening. A few and recent publications report the use of spheroids to investigate electropermeabilization process. We studied the response of spheroids to electrical field pulses (EP) in terms of their age, diameter or formation technique. We found that small human HCT-116 colorectal spheroids are more sensitive to electric field pulses than larger ones. Indeed, the growth of spheroids with a diameter of 300 μm decreased by a factor 2 over 4 days when submitted to EP (8 pulses, lasting 100 μs at a 1,300 V/cm field intensity). Under those electrical conditions, 650 μm spheroids were not affected. These data were the same whatever the formation method (i.e. hanging drop and nonadherent techniques). These observations point out the fact that characteristics of 3D cell models have to be taken into account to avoid biased conclusions of experimental data.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 22, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off