3D-QSAR, molecular dynamics simulations, and molecular docking studies on pyridoaminotropanes and tetrahydroquinazoline as mTOR inhibitors

3D-QSAR, molecular dynamics simulations, and molecular docking studies on pyridoaminotropanes and... Cancer is a second major disease after metabolic disorders where the number of cases of death is increasing gradually. Mammalian target of rapamycin (mTOR) is one of the most important targets for treatment of cancer, specifically for breast and lung cancer. In the present research work, Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) studies were performed on 50 compounds reported as mTOR inhibitors. Three different alignment methods were used, and among them, distill method was found to be the best method. In CoMFA, leave-one-out cross-validated coefficients $$(q^{2})$$ ( q 2 ) , conventional coefficient $$(r^{2})$$ ( r 2 ) , and predicted correlation coefficient $$(r^{2}_{\mathrm{pred}})$$ ( r pred 2 ) values were found to be 0.664, 0.992, and 0.652, respectively. CoMSIA study was performed in 25 different combinations of features, such as steric, electrostatic, hydrogen bond donor, hydrogen bond acceptor, and hydrophobic. From this, a combination of steric, electrostatic, hydrophobic (SEH), and a combination of steric, electrostatic, hydrophobic, donor, and acceptor (SEHDA) were found as best combinations. In CoMSIA (SEHDA), $$q^{2}$$ q 2 , $$r^{2}$$ r 2 and $$r^{2}_{\mathrm{pred}}$$ r pred 2 were found to be 0.646, 0.977, and 0.682, respectively, while in the case of CoMSIA (SEH), the values were 0.739, 0.976, and 0.779, respectively. Contour maps were generated and validated by molecular dynamics simulation-assisted molecular docking study. Highest active compound 19, moderate active compound 15, and lowest active compound 42 were docked on mTOR protein to validate the results of our molecular docking study. The result of the molecular docking study of highest active compound 19 is in line with the outcomes generated by contour maps. Based on the features obtained through this study, six novel mTOR inhibitors were designed and docked. This study could be useful for designing novel molecules with increased anticancer activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Diversity Springer Journals

3D-QSAR, molecular dynamics simulations, and molecular docking studies on pyridoaminotropanes and tetrahydroquinazoline as mTOR inhibitors

Loading next page...
Springer International Publishing
Copyright © 2017 by Springer International Publishing Switzerland
Life Sciences; Biochemistry, general; Organic Chemistry; Polymer Sciences; Pharmacy
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial