3-D PTV measurement of Marangoni convection in liquid bridge in space experiment

3-D PTV measurement of Marangoni convection in liquid bridge in space experiment Microgravity experiments have been conducted on the International Space Station in order to clarify the transition processes of the Marangoni convection in liquid bridges of high Prandtl number fluid. The use of microgravity allows us to generate large liquid bridges, 30 mm in diameter and up to 60 mm in length. Three-dimensional particle tracking velocimetry (3-D PTV) is used to reveal complex flow patterns that appear after the transition of the flow field to oscillatory states. It is found that a standing-wave oscillation having an azimuthal mode number equal to one appears in the long liquid bridges. For the liquid bridge 45 mm in length, the oscillation of the flow field is observed in a meridional plane of the liquid bridge, and the flow field exhibits the presence of multiple vortical structures traveling from the heated disk toward the cooled disk. Such flow behaviors are shown to be associated with the propagation of surface temperature fluctuations visualized with an IR camera. These results indicate that the oscillation of the flow and temperature field is due to the propagation of the hydrothermal waves. Their characteristics are discussed in comparison with some previous results with long liquid bridges. It is shown that the axial wavelength of the hydrothermal wave observed presently is comparable to the length of the liquid bridge and that this result disagrees with the previous linear stability analysis for an infinitely long liquid bridge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

3-D PTV measurement of Marangoni convection in liquid bridge in space experiment

Loading next page...
 
/lp/springer_journal/3-d-ptv-measurement-of-marangoni-convection-in-liquid-bridge-in-space-dlST1cdqYc
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1136-9
Publisher site
See Article on Publisher Site

Abstract

Microgravity experiments have been conducted on the International Space Station in order to clarify the transition processes of the Marangoni convection in liquid bridges of high Prandtl number fluid. The use of microgravity allows us to generate large liquid bridges, 30 mm in diameter and up to 60 mm in length. Three-dimensional particle tracking velocimetry (3-D PTV) is used to reveal complex flow patterns that appear after the transition of the flow field to oscillatory states. It is found that a standing-wave oscillation having an azimuthal mode number equal to one appears in the long liquid bridges. For the liquid bridge 45 mm in length, the oscillation of the flow field is observed in a meridional plane of the liquid bridge, and the flow field exhibits the presence of multiple vortical structures traveling from the heated disk toward the cooled disk. Such flow behaviors are shown to be associated with the propagation of surface temperature fluctuations visualized with an IR camera. These results indicate that the oscillation of the flow and temperature field is due to the propagation of the hydrothermal waves. Their characteristics are discussed in comparison with some previous results with long liquid bridges. It is shown that the axial wavelength of the hydrothermal wave observed presently is comparable to the length of the liquid bridge and that this result disagrees with the previous linear stability analysis for an infinitely long liquid bridge.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 30, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off