β2-Integrin-Mediated Adhesion and Intracellular Ca2+ Release in Human Eosinophils

β2-Integrin-Mediated Adhesion and Intracellular Ca2+ Release in Human Eosinophils Human eosinophils spontaneously adhere to various substrates in the absence of exogenously added activators. In the present study a method was developed for characterizing eosinophil adhesion by measuring changes in impedance. Impedance measurements were performed in HCO3-buffered HybriCare medium maintained in a humidified 5% CO2 incubator at 37°C. Impedance increased by more than 1 kΩ within minutes after eosinophils made contact with the substrate, reaching a peak within 20 min. Blocking mobilization of intracellular [Ca2+] that precedes adhesion with BAPTA-AM (10 μM) completely inhibited the rise in impedance as well as the changes in cell shape typically observed in adherent cells. However, lowering the extracellular [Ca2+] with 2.5 mM EGTA did not inhibit the increase in impedance. Pretreatment with anti-CD18 antibody to block substrate interactions with β2-integrins, or jasplakinolide (2 μM) to block actin reorganization, abolished the increase in impedance and adherent morphology of the cells. Exposure of eosinophils to the phosphatidylinositol 3 kinase inhibitor LY294002 (5 μM) or treatment with protein kinase C zeta pseudosubstrate to competitively inhibit activity of the enzyme significantly reduced the increase in impedance and inhibited the cell spreading associated with adhesion. These results demonstrate a novel method for measuring eosinophil adhesion and showed that, following formation of a tethered attachment, a rapid increase in intracellular [Ca2+] precedes the cytoskeletal rearrangements required for cell shape changes and plasma membrane-substrate interactions associated with adhesion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

β2-Integrin-Mediated Adhesion and Intracellular Ca2+ Release in Human Eosinophils

Loading next page...
 
/lp/springer_journal/2-integrin-mediated-adhesion-and-intracellular-ca2-release-in-human-z6q5vkTP20
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-009-9163-7
Publisher site
See Article on Publisher Site

Abstract

Human eosinophils spontaneously adhere to various substrates in the absence of exogenously added activators. In the present study a method was developed for characterizing eosinophil adhesion by measuring changes in impedance. Impedance measurements were performed in HCO3-buffered HybriCare medium maintained in a humidified 5% CO2 incubator at 37°C. Impedance increased by more than 1 kΩ within minutes after eosinophils made contact with the substrate, reaching a peak within 20 min. Blocking mobilization of intracellular [Ca2+] that precedes adhesion with BAPTA-AM (10 μM) completely inhibited the rise in impedance as well as the changes in cell shape typically observed in adherent cells. However, lowering the extracellular [Ca2+] with 2.5 mM EGTA did not inhibit the increase in impedance. Pretreatment with anti-CD18 antibody to block substrate interactions with β2-integrins, or jasplakinolide (2 μM) to block actin reorganization, abolished the increase in impedance and adherent morphology of the cells. Exposure of eosinophils to the phosphatidylinositol 3 kinase inhibitor LY294002 (5 μM) or treatment with protein kinase C zeta pseudosubstrate to competitively inhibit activity of the enzyme significantly reduced the increase in impedance and inhibited the cell spreading associated with adhesion. These results demonstrate a novel method for measuring eosinophil adhesion and showed that, following formation of a tethered attachment, a rapid increase in intracellular [Ca2+] precedes the cytoskeletal rearrangements required for cell shape changes and plasma membrane-substrate interactions associated with adhesion.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 17, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off