17β-Estradiol Increases Non-CpG Methylation in Exon 1 of the Rainbow Trout (Oncorhynchus mykiss) MyoD Gene

17β-Estradiol Increases Non-CpG Methylation in Exon 1 of the Rainbow Trout (Oncorhynchus mykiss)... MyoD is an important myogenic transcription factor necessary for the differentiation of myogenic precursor cells (MPC) to form mature myotubes, a process essential for muscle growth. Epigenetic markers such as CpH methylation are known gene regulators that are important for the differentiation process. In this study, we investigated whether DNA methylation is a potential mechanism associated with the ability of 17β-estradiol (E2) to reduce MyoD gene expression and muscle growth in rainbow trout. Rainbow trout received a single intraperitoneal injection of E2 or the injection vehicle (control). Skeletal muscle was collected 24 h post injection and analyzed for DNA methylation within the MyoD gene and the expression of DNA methyltransferases. CpG islands of the MyoD gene were predicted using MethPrimer software, and these regions were PCR amplified and analyzed using bisulfite sequencing. The percent methylation of the targeted CpG did not differ between control and E2-treated fish. However, percent CpH methylation in the MyoD exon 1 region was elevated with E2 treatment. Two of the methylated CpH sites were located in conserved transcription factor binding motifs, estrogen response element (ERE), and Myc binding site. Quantitative real-time PCR analysis revealed a significant increase in expression of DNA methyltransferases, Dnmt3a and Dnmt3b, in E2-treated muscle, suggesting an increased genome methylation. Differential CpH methylation in MyoD gene of control and E2-treated fish suggests an epigenetic mechanism through which E2 decreases MyoD gene expression and contributes to reduced muscle growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biotechnology Springer Journals

17β-Estradiol Increases Non-CpG Methylation in Exon 1 of the Rainbow Trout (Oncorhynchus mykiss) MyoD Gene

Loading next page...
 
/lp/springer_journal/17-estradiol-increases-non-cpg-methylation-in-exon-1-of-the-rainbow-jfqtaqDQvj
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Freshwater & Marine Ecology; Microbiology; Zoology; Engineering, general
ISSN
1436-2228
eISSN
1436-2236
D.O.I.
10.1007/s10126-017-9756-6
Publisher site
See Article on Publisher Site

Abstract

MyoD is an important myogenic transcription factor necessary for the differentiation of myogenic precursor cells (MPC) to form mature myotubes, a process essential for muscle growth. Epigenetic markers such as CpH methylation are known gene regulators that are important for the differentiation process. In this study, we investigated whether DNA methylation is a potential mechanism associated with the ability of 17β-estradiol (E2) to reduce MyoD gene expression and muscle growth in rainbow trout. Rainbow trout received a single intraperitoneal injection of E2 or the injection vehicle (control). Skeletal muscle was collected 24 h post injection and analyzed for DNA methylation within the MyoD gene and the expression of DNA methyltransferases. CpG islands of the MyoD gene were predicted using MethPrimer software, and these regions were PCR amplified and analyzed using bisulfite sequencing. The percent methylation of the targeted CpG did not differ between control and E2-treated fish. However, percent CpH methylation in the MyoD exon 1 region was elevated with E2 treatment. Two of the methylated CpH sites were located in conserved transcription factor binding motifs, estrogen response element (ERE), and Myc binding site. Quantitative real-time PCR analysis revealed a significant increase in expression of DNA methyltransferases, Dnmt3a and Dnmt3b, in E2-treated muscle, suggesting an increased genome methylation. Differential CpH methylation in MyoD gene of control and E2-treated fish suggests an epigenetic mechanism through which E2 decreases MyoD gene expression and contributes to reduced muscle growth.

Journal

Marine BiotechnologySpringer Journals

Published: Jun 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off