Xenomict energy in cold solids in space

Xenomict energy in cold solids in space Minerals on earth whose crystalline order has been reduced by radioactive decay of contained atoms are termed “metamict.” They are rare and few because in most crystalline solids, atoms and vacancies are relatively mobile at terrestrial temperatures, and radiation damage tends to be self-annealing. This is not the case in the extreme cold of deep space. Below roughly 100 K, reduced vacancy mobility allows cosmic ray and solar wind induced lattice defects to endure and accumulate for eons, reaching energy densities of up to MJ kg−1 in some materials. We examine the possible effects of the release of energy stored in cold deep-space materials when solid-state defects recombine upon warming due to impacts, gravitational infall, or perihelion. Dimensional analysis suggests energetic defect recombination in radiation-damaged “xenomict” solids in comets, and planetesimals may, in some circumstances, raise internal temperatures enough to melt ice and volatilize frozen gases. We speculate that this may account for some cometary outbursts and Deep Impact experiment results. Calorimetric experiments on appropriately irradiated natural and synthetic materials are needed to further quantify these mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Naturwissenschaften Springer Journals

Loading next page...
 
/lp/springer-journals/xenomict-energy-in-cold-solids-in-space-olperfpXih
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Life Sciences; Environment, general; Life Sciences, general
ISSN
0028-1042
eISSN
1432-1904
DOI
10.1007/s00114-005-0067-9
pmid
16362427
Publisher site
See Article on Publisher Site

Abstract

Minerals on earth whose crystalline order has been reduced by radioactive decay of contained atoms are termed “metamict.” They are rare and few because in most crystalline solids, atoms and vacancies are relatively mobile at terrestrial temperatures, and radiation damage tends to be self-annealing. This is not the case in the extreme cold of deep space. Below roughly 100 K, reduced vacancy mobility allows cosmic ray and solar wind induced lattice defects to endure and accumulate for eons, reaching energy densities of up to MJ kg−1 in some materials. We examine the possible effects of the release of energy stored in cold deep-space materials when solid-state defects recombine upon warming due to impacts, gravitational infall, or perihelion. Dimensional analysis suggests energetic defect recombination in radiation-damaged “xenomict” solids in comets, and planetesimals may, in some circumstances, raise internal temperatures enough to melt ice and volatilize frozen gases. We speculate that this may account for some cometary outbursts and Deep Impact experiment results. Calorimetric experiments on appropriately irradiated natural and synthetic materials are needed to further quantify these mechanisms.

Journal

NaturwissenschaftenSpringer Journals

Published: Feb 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off