Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Weed Detection Using Canopy Reflection

Weed Detection Using Canopy Reflection For site-specific application of herbicides, automatic detection and evaluation of weeds is desirable. Since reflectance of crop, weeds and soil differs in the visual and near infrared wavelengths, there is potential for using reflection measurements at different wavelengths to distinguish between them. Reflectance spectra of crop and weed canopies were used to evaluate the possibilities of weed detection with reflection measurements in laboratory circumstances. Sugarbeet and maize and 7 weed species were included in the measurements. Classification into crop and weeds was possible in laboratory tests, using a limited number of wavelength band ratios. Crop and weed spectra could be separated with more than 97% correct classification. Field measurements of crop and weed reflection were conducted for testing spectral weed detection. Canopy reflection was measured with a line spectrograph in the wavelength range from 480 to 820 nm (visual to near infrared) with ambient light. The discriminant model uses a limited number of narrow wavelength bands. Over 90% of crop and weed spectra can be identified correctly, when the discriminant model is specific to the prevailing light conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Weed Detection Using Canopy Reflection

Loading next page...
 
/lp/springer-journals/weed-detection-using-canopy-reflection-7XgVMvEFyp

References (36)

Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
DOI
10.1023/A:1013326304427
Publisher site
See Article on Publisher Site

Abstract

For site-specific application of herbicides, automatic detection and evaluation of weeds is desirable. Since reflectance of crop, weeds and soil differs in the visual and near infrared wavelengths, there is potential for using reflection measurements at different wavelengths to distinguish between them. Reflectance spectra of crop and weed canopies were used to evaluate the possibilities of weed detection with reflection measurements in laboratory circumstances. Sugarbeet and maize and 7 weed species were included in the measurements. Classification into crop and weeds was possible in laboratory tests, using a limited number of wavelength band ratios. Crop and weed spectra could be separated with more than 97% correct classification. Field measurements of crop and weed reflection were conducted for testing spectral weed detection. Canopy reflection was measured with a line spectrograph in the wavelength range from 480 to 820 nm (visual to near infrared) with ambient light. The discriminant model uses a limited number of narrow wavelength bands. Over 90% of crop and weed spectra can be identified correctly, when the discriminant model is specific to the prevailing light conditions.

Journal

Precision AgricultureSpringer Journals

Published: Oct 8, 2004

There are no references for this article.