Access the full text.
Sign up today, get DeepDyve free for 14 days.
A nanoscale calculation is performed for water permeation through the cell membrane in a human body, which is 7–8 nm thick and contains densely distributed nanopores with the radii ranging between 0.2 and 0.5 nm. The pressure drop and the critical power loss on a single nanopore for initiating the wall slippage are calculated. The wall slipping velocity is found to increase significantly with reduction of the pore radius and to increase linearly with an increase in the power loss on the pore. For no wall slippage, the water mass flow rate through the pore is significantly lower than the classical hydrodynamic flow theory calculation; however, it is much greater (by three to five orders of magnitude) than the classical hydrodynamic flow theory calculation in the case where the wall slippage occurs. This water flow enhancement is heavily dependent on the power loss on the pore.
Journal of Applied Mechanics and Technical Physics – Springer Journals
Published: Dec 1, 2022
Keywords: cell membrane; transport; water; wall slippage
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.