Access the full text.
Sign up today, get DeepDyve free for 14 days.
Recently, the construction of similar high-rise buildings has increased due to the increasing population. Moreover, due to space constraints, these structures are being built next to each other. When such tall buildings are located in high seismic zones, earthquake protection becomes essential. There have been many studies on vibration control by connecting dampers to adjacent dissimilar buildings. However, reviews with specific recommendations on damper connections to adjacent similar buildings are found to be scarce. This study aims to control the building vibration that is dynamically similar and adjacent to each other through damper connections. In this study, two adjacent ten-storied, dynamically similar RC buildings are considered. The buildings are modeled with shear frame and lumped mass for efficient yet straightforward analysis. The idealized shear buildings were connected with viscoelastic dampers using different damper configurations and then subjected to seven seismic ground motions. A numerical integration technique is used to obtain the seismic response, and a single objective particle swarm optimization technique is employed to optimize the position of dampers. The viscoelastic dampers provided at their optimal locations improved the seismic performance of coupled buildings in an economical way.
Journal of The Institution of Engineers (India): Series A – Springer Journals
Published: Dec 2, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.