Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica

Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus... A germplasm collection consisting of 1475 entries from 21 species of Brassica, including 36 lower taxa, was evaluated for the fatty acid composition of the seed oil. A total of 358 entries representing the taxonomic variability in the collection were selected and analysed by gas-liquid chromatography (GLC). The remaining 1117 entries were analysed by near-infrared reflectance spectroscopy (NIRS), after developing multi-species calibration equations. The results demonstrated that NIRS is an effective technique to assess variability for oleic, linoleic, linolenic and erucic acid in intact-seed samples of multiple Brassica species, provided that calibration equations be developed from sets containing large taxonomic and chemical variability. Some fatty acid ratios were used to estimate the efficiency of the different biosynthetic pathways. Two well-defined patterns were observed. The first one was characterised by high elongation efficiency and accumulation of high levels of erucic acid. The highest erucic acid content (>55% of the total fatty acids) was found in the cultivated species B. napus L., B. oleracea L., and B. rapa L., and in the wild species B. incana Tenore, B. rupestris Raf., and B. villosa Bivona-Bernardi, the three latter belonging to the B. oleracea group (n=9). The second pattern was characterised by high desaturation efficiency, resulting in the accumulation of high levels of the polyunsaturated linoleic and linolenic acid (up to more than 55%). The highest levels of these fatty acids were found in samples of B. elongata Ehrh., especially of the var. integrifolia Boiss. The utility of the reported variability for plant breeding is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Genetic Resources and Crop Evolution Springer Journals

Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica

Loading next page...
 
/lp/springer-journals/variability-for-the-fatty-acid-composition-of-the-seed-oil-in-a-p1T50DdUqL
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Plant Sciences; Plant Pathology; Plant Physiology
ISSN
0925-9864
eISSN
1573-5109
DOI
10.1023/A:1008628624867
Publisher site
See Article on Publisher Site

Abstract

A germplasm collection consisting of 1475 entries from 21 species of Brassica, including 36 lower taxa, was evaluated for the fatty acid composition of the seed oil. A total of 358 entries representing the taxonomic variability in the collection were selected and analysed by gas-liquid chromatography (GLC). The remaining 1117 entries were analysed by near-infrared reflectance spectroscopy (NIRS), after developing multi-species calibration equations. The results demonstrated that NIRS is an effective technique to assess variability for oleic, linoleic, linolenic and erucic acid in intact-seed samples of multiple Brassica species, provided that calibration equations be developed from sets containing large taxonomic and chemical variability. Some fatty acid ratios were used to estimate the efficiency of the different biosynthetic pathways. Two well-defined patterns were observed. The first one was characterised by high elongation efficiency and accumulation of high levels of erucic acid. The highest erucic acid content (>55% of the total fatty acids) was found in the cultivated species B. napus L., B. oleracea L., and B. rapa L., and in the wild species B. incana Tenore, B. rupestris Raf., and B. villosa Bivona-Bernardi, the three latter belonging to the B. oleracea group (n=9). The second pattern was characterised by high desaturation efficiency, resulting in the accumulation of high levels of the polyunsaturated linoleic and linolenic acid (up to more than 55%). The highest levels of these fatty acids were found in samples of B. elongata Ehrh., especially of the var. integrifolia Boiss. The utility of the reported variability for plant breeding is discussed.

Journal

Genetic Resources and Crop EvolutionSpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off