Validation of biophysical models: issues and methodologies. A review

Validation of biophysical models: issues and methodologies. A review The potential of mathematical models is widely acknowledged for examining components and interactions of natural systems, estimating the changes and uncertainties on outcomes, and fostering communication between scientists with different backgrounds and between scientists, managers and the community. For favourable reception of models, a systematic accrual of a good knowledge base is crucial for both science and decision-making. As the roles of models grow in importance, there is an increase in the need for appropriate methods with which to test their quality and performance. For biophysical models, the heterogeneity of data and the range of factors influencing usefulness of their outputs often make it difficult for full analysis and assessment. As a result, modelling studies in the domain of natural sciences often lack elements of good modelling practice related to model validation, that is correspondence of models to its intended purpose. Here we review validation issues and methods currently available for assessing the quality of biophysical models. The review covers issues of validation purpose, the robustness of model results, data quality, model prediction and model complexity. The importance of assessing input data quality and interpretation of phenomena is also addressed. Details are then provided on the range of measures commonly used for validation. Requirements for a methodology for assessment during the entire model-cycle are synthesised. Examples are used from a variety of modelling studies which mainly include agronomic modelling, e.g. crop growth and development, climatic modelling, e.g. climate scenarios, and hydrological modelling, e.g. soil hydrology, but the principles are essentially applicable to any area. It is shown that conducting detailed validation requires multi-faceted knowledge, and poses substantial scientific and technical challenges. Special emphasis is placed on using combined multiple statistics to expand our horizons in validation whilst also tailoring the validation requirements to the specific objectives of the application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agronomy for Sustainable Development Springer Journals

Validation of biophysical models: issues and methodologies. A review

Loading next page...
 
/lp/springer-journals/validation-of-biophysical-models-issues-and-methodologies-a-review-Cg8mT0pZdC
Publisher
Springer Journals
Copyright
Copyright © 2009 by INRA, EDP Sciences
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Sustainable Development
ISSN
1774-0746
eISSN
1773-0155
D.O.I.
10.1051/agro/2009001
Publisher site
See Article on Publisher Site

Abstract

The potential of mathematical models is widely acknowledged for examining components and interactions of natural systems, estimating the changes and uncertainties on outcomes, and fostering communication between scientists with different backgrounds and between scientists, managers and the community. For favourable reception of models, a systematic accrual of a good knowledge base is crucial for both science and decision-making. As the roles of models grow in importance, there is an increase in the need for appropriate methods with which to test their quality and performance. For biophysical models, the heterogeneity of data and the range of factors influencing usefulness of their outputs often make it difficult for full analysis and assessment. As a result, modelling studies in the domain of natural sciences often lack elements of good modelling practice related to model validation, that is correspondence of models to its intended purpose. Here we review validation issues and methods currently available for assessing the quality of biophysical models. The review covers issues of validation purpose, the robustness of model results, data quality, model prediction and model complexity. The importance of assessing input data quality and interpretation of phenomena is also addressed. Details are then provided on the range of measures commonly used for validation. Requirements for a methodology for assessment during the entire model-cycle are synthesised. Examples are used from a variety of modelling studies which mainly include agronomic modelling, e.g. crop growth and development, climatic modelling, e.g. climate scenarios, and hydrological modelling, e.g. soil hydrology, but the principles are essentially applicable to any area. It is shown that conducting detailed validation requires multi-faceted knowledge, and poses substantial scientific and technical challenges. Special emphasis is placed on using combined multiple statistics to expand our horizons in validation whilst also tailoring the validation requirements to the specific objectives of the application.

Journal

Agronomy for Sustainable DevelopmentSpringer Journals

Published: Jul 4, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off