Transcriptome analysis of alfalfa glandular trichomes

Transcriptome analysis of alfalfa glandular trichomes Glandular trichomes are a major site of plant natural product synthesis and accumulation for protection against insect predation. However, to date few studies have attempted to obtain a global view of trichome gene expression. Two contrasting approaches have been adopted to investigate genes expressed in glandular trichomes from alfalfa (Medicago sativa L.). In the first approach, 5,674 clones from an alfalfa glandular trichome cDNA library were sequenced. The most highly abundant expressed sequence tag (EST) corresponded to a lipid transfer protein. The presence of ESTs corresponding to enzymes for all steps in the biosynthesis of flavonoids suggests that these are important metabolites in alfalfa trichome biology, as confirmed by histochemistry and metabolite profiling. No ESTs corresponded to enzymes of cyclized terpenoid biosynthesis. In a second approach, microarray analysis was used to compare levels of alfalfa transcripts corresponding to 16,086 Medicago truncatula A17 genes in stems with and without trichomes. This revealed over 1,000 genes with strong preferential expression in the trichome fraction of the stem, 70% of which are of unknown function. These define a class of genes that are not trichome-specific, since M. truncatula A17 does not itself have glandular trichomes, but has potential importance for trichome function within the stem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Planta Springer Journals

Transcriptome analysis of alfalfa glandular trichomes

Planta, Volume 221 (1) – Dec 2, 2004

Loading next page...
 
/lp/springer-journals/transcriptome-analysis-of-alfalfa-glandular-trichomes-60NJJnz5Zr
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag
Subject
LifeSciences
ISSN
0032-0935
eISSN
1432-2048
D.O.I.
10.1007/s00425-004-1424-1
Publisher site
See Article on Publisher Site

Abstract

Glandular trichomes are a major site of plant natural product synthesis and accumulation for protection against insect predation. However, to date few studies have attempted to obtain a global view of trichome gene expression. Two contrasting approaches have been adopted to investigate genes expressed in glandular trichomes from alfalfa (Medicago sativa L.). In the first approach, 5,674 clones from an alfalfa glandular trichome cDNA library were sequenced. The most highly abundant expressed sequence tag (EST) corresponded to a lipid transfer protein. The presence of ESTs corresponding to enzymes for all steps in the biosynthesis of flavonoids suggests that these are important metabolites in alfalfa trichome biology, as confirmed by histochemistry and metabolite profiling. No ESTs corresponded to enzymes of cyclized terpenoid biosynthesis. In a second approach, microarray analysis was used to compare levels of alfalfa transcripts corresponding to 16,086 Medicago truncatula A17 genes in stems with and without trichomes. This revealed over 1,000 genes with strong preferential expression in the trichome fraction of the stem, 70% of which are of unknown function. These define a class of genes that are not trichome-specific, since M. truncatula A17 does not itself have glandular trichomes, but has potential importance for trichome function within the stem.

Journal

PlantaSpringer Journals

Published: Dec 2, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off