Access the full text.
Sign up today, get DeepDyve free for 14 days.
Minimal residual disease (MRD) is of high prognostic value in risk stratification in childhood acute lymphoblastic leukaemia. Flow cytometry (FCM) was shown to yield reliable results in MRD measurement. However, the interpretation of FCM data relies largely on operator skills and experience. While sample preparation, antibody panels, staining procedures and flow cytometric acquisition can be standardized, easily controlled and be made available worldwide, the availability of experienced operators represents the current bottleneck to a growing number of laboratories to the benefit of an increasing number of patients with leukaemia. Currently, international paediatric studies—throughout Europe, South America, to Australia—aim at stratifying the treatment according to the FCM-MRD methodology. The measurements are still operator-dependent leading to substantial costs regarding training and quality control. This article introduces a new European Union-funded project (AutoFLOW) aiming at the standardization and automation of FCM-MRD analysis by machine-learning technology.
memo - Magazine of European Medical Oncology – Springer Journals
Published: Sep 11, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.