Access the full text.
Sign up today, get DeepDyve free for 14 days.
The gap between human semantic perception of an image and its abstraction by some low-level features is one of the main shortcomings of the actual content-based image retrieval (CBIR) systems. This paper presents an effort to overcome this drawback and proposes a CBIR approach in which retrieved images are more likely to satisfy the user expectations. Multi-label classification, in which an instance is assigned to different classes, provides a general framework to establish semantic correspondence between images in a database and a query image. Accordingly, in the framework of multi-label classification, a new feature fusion strategy is developed based on Dempster–Shafer evidence theory to allow handling lack of prior probabilities and uncertain information provided by low-level features. In this study, texture features are extracted through wavelet correlogram and color features are obtained using correlogram of vector quantized image colors. These features are subsequently fused via a possibility approach for being used in multi-label classification to retrieve images relevant to a query image. Experimental results on three well-known public and international image datasets demonstrate the superiority of the proposed algorithm over its close counterparts in terms of average precision and F1 measure.
International Journal of Multimedia Information Retrieval – Springer Journals
Published: Sep 20, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.