Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state

Threshold quantum secret sharing between multiparty and multiparty using... We propose a (t, m)−(s, n) threshold quantum secret sharing protocol between multiparty (m members in group 1) and multiparty (n members in group 2) using a sequence of Greenberger–Horne–Zeilinger (GHZ) states, which is useful and efficient when the parties of communication are not all present. In the protocol, Alice prepares a sequence of GHZ states in one of the eight different states and sends the last two particles to the first agent while other members encode their information on the sequence via unitary transformations. Finally the last member in group 2 measures the qubits. It is shown that this scheme is safe. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state

Loading next page...
 
/lp/springer-journals/threshold-quantum-secret-sharing-between-multiparty-and-multiparty-xzaD02aMf0
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0471-y
Publisher site
See Article on Publisher Site

Abstract

We propose a (t, m)−(s, n) threshold quantum secret sharing protocol between multiparty (m members in group 1) and multiparty (n members in group 2) using a sequence of Greenberger–Horne–Zeilinger (GHZ) states, which is useful and efficient when the parties of communication are not all present. In the protocol, Alice prepares a sequence of GHZ states in one of the eight different states and sends the last two particles to the first agent while other members encode their information on the sequence via unitary transformations. Finally the last member in group 2 measures the qubits. It is shown that this scheme is safe.

Journal

Quantum Information ProcessingSpringer Journals

Published: Aug 22, 2012

References

  • Multiparty quantum secret sharing of secure direct communication
    Zhang, Z.J.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off