Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Lorenz, R. Lal, C. Preston, K. Nierop (2007)
Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)moleculesGeoderma, 142
C. Marchand, P. Albéric, E. Lallier-vergés, F. Baltzer (2006)
Distribution and Characteristics of Dissolved Organic Matter in Mangrove Sediment Pore Waters along the Coastline of French GuianaBiogeochemistry, 81
A. Jokic, J. Cutler, E. Ponomarenko, G. Kamp, D. Anderson (2003)
Organic carbon and sulphur compounds in wetland soils: insights on structure and transformation processes using K-edge XANES and NMR spectroscopyGeochimica et Cosmochimica Acta, 67
J. Hedges, G. Eglinton, P. Hatcher, D. Kirchman, C. Arnosti, S. Derenne, R. Evershed, I. Kögel‐Knabner, J. Leeuw, R. Littke, W. Michaelis, J. Rullkötter (2000)
The molecularly-uncharacterized component of nonliving organic matter in natural environmentsOrganic Geochemistry, 31
E. Minor, C. Steinbring, Krista Longnecker, E. Kujawinski (2011)
Characterization of dissolved organic matter in Lake Superior and its watershed using ultrahigh resolution mass spectrometryOrganic Geochemistry, 43
(2012)
Bacterial Biogeochemistry 3rd edn
All rights reserved
M. Rillig, B. Caldwell, H. Wösten, P. Sollins (2007)
Role of proteins in soil carbon and nitrogen storage: controls on persistenceBiogeochemistry, 85
D. Solomon, J. Lehmann, J. Kinyangi, Biqing Liang, K. Heymann, L. Dathe, K. Hanley, S. Wirick, C. Jacobsen (2009)
Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compoundsSoil Science Society of America Journal, 73
M. Kleber, P. Sollins, R. Sutton (2007)
A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfacesBiogeochemistry, 85
J. Oades (1988)
The retention of organic matter in soilsBiogeochemistry, 5
J. Prietzel, A. Botzaki, Nora Tyufekchieva, M. Brettholle, J. Thieme, W. Klysubun (2011)
Sulfur speciation in soil by S K-Edge XANES spectroscopy: comparison of spectral deconvolution and linear combination fitting.Environmental science & technology, 45 7
J. Batson, G. Noe, C. Hupp, K. Krauss, Nancy Rybicki, E. Schenk (2015)
Soil greenhouse gas emissions and carbon budgeting in a short‐hydroperiod floodplain wetlandJournal of Geophysical Research: Biogeosciences, 120
K. Heymann, J. Lehmann, D. Solomon, M. Schmidt, Thomas Regier (2011)
C 1s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbonOrganic Geochemistry, 42
Q. Jin, C. Bethke (2005)
Predicting the rate of microbial respiration in geochemical environmentsGeochimica et Cosmochimica Acta, 69
C. Rumpel, I. Kögel‐Knabner (2010)
Deep soil organic matter—a key but poorly understood component of terrestrial C cyclePlant and Soil, 338
R. Burns, J. DeForest, Juergen Marxsen, R. Sinsabaugh, M. Stromberger, M. Wallenstein, M. Weintraub, A. Zoppini (2013)
Soil enzymes in a changing environment: Current knowledge and future directionsSoil Biology & Biochemistry, 58
D. LaRowe, P. Cappellen (2011)
Degradation of natural organic matter: a thermodynamic analysisGeochimica et Cosmochimica Acta, 75
G. Blazejewski, M. Stolt (2009)
Spatial Distribution of Carbon in the Subsurface of Riparian ZonesSoil Science Society of America Journal, 73
K. Tockner, J. Stanford (2002)
Riverine flood plains: present state and future trendsEnvironmental Conservation, 29
K. Tockner, J. Stanford (2016)
Review of: Riverine Flood Plains: Present State and Future Trends
N. Janot, Juan Pacheco, Don Pham, Timothy O'Brien, Debra Hausladen, Vincent Noël, Florent Lallier, Kate Maher, S. Fendorf, Kenneth Williams, Philip Long, J. Bargar (2016)
Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry.Environmental science & technology, 50 1
N. Gurwick, Daniel McCorkle, P. Groffman, A. Gold, D. Kellogg, Peter Seitz-Rundlett (2008)
Mineralization of ancient carbon in the subsurface of riparian forestsJournal of Geophysical Research, 113
N. Chaopricha, E. Marín-Spiotta (2014)
Soil burial contributes to deep soil organic carbon storageSoil Biology & Biochemistry, 69
S. Hodgkins, M. Tfaily, C. McCalley, T. Logan, P. Crill, S. Saleska, V. Rich, J. Chanton (2014)
Changes in peat chemistry associated with permafrost thaw increase greenhouse gas productionProceedings of the National Academy of Sciences, 111
Tina Šantl-Temkiv, K. Finster, T. Dittmar, B. Hansen, R. Thyrhaug, N. Nielsen, U. Karlson (2013)
Hailstones: A Window into the Microbial and Chemical Inventory of a Storm CloudPLoS ONE, 8
K. Oost, G. Verstraeten, S. Doetterl, B. Notebaert, F. Wiaux, N. Broothaerts, J. Six (2012)
Legacy of human-induced C erosion and burial on soil–atmosphere C exchangeProceedings of the National Academy of Sciences, 109
M. Tfaily, R. Chu, N. Tolić, K. Roscioli, C. Anderton, L. Paša-Tolić, E. Robinson, N. Hess (2015)
Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry.Analytical chemistry, 87 10
E. Marín-Spiotta, K. Gruley, John Crawford, E. Atkinson, J. Miesel, S. Greene, C. Cardona-Correa, Robert Spencer (2014)
Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundariesBiogeochemistry, 117
B. Koch, T. Dittmar (2006)
From mass to structure: an aromaticity index for high‐resolution mass data of natural organic matterRapid Communications in Mass Spectrometry, 20
Sunghwan Kim, Robert Kramer, P. Hatcher (2003)
Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram.Analytical chemistry, 75 20
M. Seidel, M. Beck, T. Riedel, Hannelore Waska, I. Suryaputra, B. Schnetger, J. Niggemann, M. Simon, T. Dittmar (2014)
Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bankGeochimica et Cosmochimica Acta, 140
P. Froelich, G. Klinkhammer, M. Bender, Nile Luedtke, G. Heath, Douglas Cullen, Paul Dauphin, D. Hammond, B. Hartman, V. Maynard (1979)
Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesisGeochimica et Cosmochimica Acta, 43
E. Kujawinski, M. Behn (2006)
Automated analysis of electrospray ionization fourier transform ion cyclotron resonance mass spectra of natural organic matter.Analytical chemistry, 78 13
M. Ricker, B. Lockaby (2015)
Soil Organic Carbon Stocks in a Large Eutrophic Floodplain Forest of the Southeastern Atlantic Coastal Plain, USAWetlands, 35
G. Lair, F. Zehetner, M. Fiebig, M. Gerzabek, C. Gestel, T. Hein, S. Hohensinner, P. Hsu, Kevin Jones, G. Jordan, A. Koelmans, A. Poot, D. Slijkerman, K. Totsche, Elisabeth Bondar‐Kunze, J. Barth (2009)
How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers.Environmental pollution, 157 12
M. Schmidt, M. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. Janssens, M. Kleber, I. Kögel‐Knabner, J. Lehmann, D. Manning, P. Nannipieri, D. Rasse, S. Weiner, S. Trumbore (2011)
Persistence of soil organic matter as an ecosystem propertyNature, 478
T Fenchel, GM King, TH Blackburn (2012)
Bacterial Biogeochemistry
J. Wan, T. Tyliszczak, T. Tokunaga (2007)
Organic carbon distribution, speciation, and elemental correlations within soil microaggregates: applications of STXM and NEXAFS spectroscopyLawrence Berkeley National Laboratory
T. Fenchel (2012)
Chapter 1 – Bacterial Metabolism
Aron Stubbins, R. Spencer, Hongmei Chen, P. Hatcher, K. Mopper, P. Hernes, Vincent Mwamba, Arthur Mangangu, J. Wabakanghanzi, J. Six (2010)
Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometryLimnology and Oceanography, 55
V. Noel, C. Marchand, F. Juillot, G. Ona-Nguema, E. Viollier, Gregory Marakovic, L. Olivi, L. Delbes, F. Gélébart, G. Morin (2014)
EXAFS analysis of iron cycling in mangrove sediments downstream a lateritized ultramafic watershed (Vavouto Bay, New Caledonia)Geochimica et Cosmochimica Acta, 136
I. Kaplan (1974)
Natural Gases in Marine Sediments
B. Ravel, M. Newville (2005)
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.Journal of synchrotron radiation, 12 Pt 4
thermodynamic limit towards more oxidized organic compounds (higher NOSC). For example, 100nM sulfide (with DOC, DIC, sulfate, and pH values kept
J Wan, T Tyliszczak, TK Tokunaga (2007)
Organic carbon distribution, speciation, and elemental correlations within soil microaggregates: applications of STXM and NEXAFS spectroscopyGeochim. Cosmochim. Acta, 71
Reinhard Stocker, D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, T. Stocker, G. Plattner, S. Allen, A. Nauels, Yu Xia, V. Bex, P. Midgley, Matthew Collins, R. Knutti, J. Arblaster, Jean-Louis Dufresne, T. Fichefet, P. Friedlingstein, M. Wehner, T. Stocker, S. Allen, P. Midgley, F. Midgley, TF Stocker, S. Allen, S. Allen (2013)
Climate Change 2013: The Physical Science Basis
D. Postma, R. Jakobsen (1996)
Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interfaceGeochimica et Cosmochimica Acta, 60
G. Claypool, I. Kaplan (1974)
The Origin and Distribution of Methane in Marine Sediments
remains neutral with regard to jurisdictional and institutional affiliations
B. Cancès, F. Juillot, G. Morin, V. Laperche, L. Álvarez, O. Proux, J. Hazemann, G. Brown, G. Calas (2005)
XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant.Environmental science & technology, 39 24
Noel Gurwicka, Peter Groffmanc, Joseph Yavitta, Arthur Goldd, Gary Blazejewskid, Mark Stoltd (2008)
Microbially available carbon in buried riparian soils in a glaciated landscapeSoil Biology & Biochemistry, 40
M. Keiluweit, P. Nico, M. Kleber, S. Fendorf (2016)
Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?Biogeochemistry, 127
Organic matter decomposition in soils and terrestrial sediments has a prominent role in the global carbon cycle. Carbon stocks in anoxic environments, such as wetlands and the subsurface of floodplains, are large and presumed to decompose slowly. The degree of microbial respiration in anoxic environments is typically thought to depend on the energetics of available terminal electron acceptors such as nitrate or sulfate; microbes couple the reduction of these compounds to the oxidation of organic carbon. However, it is also possible that the energetics of the organic carbon itself can determine whether it is decomposed. Here we examined water-soluble organic carbon by Fourier-transform ion-cyclotron-resonance mass spectrometry to compare the chemical composition and average nominal oxidation state of carbon—a metric reflecting whether microbial oxidation of organic matter is thermodynamically favourable—in anoxic (sulfidic) and oxic (non-sulfidic) floodplain sediments. We observed distinct minima in the average nominal oxidation state of water-soluble carbon in sediments exhibiting anoxic, sulfate-reducing conditions, suggesting preservation of carbon compounds with nominal oxidation states below the threshold that makes microbial sulfate reduction thermodynamically favourable. We conclude that thermodynamic limitations constitute an important complement to other mechanisms of carbon preservation, such as enzymatic restrictions and mineral association, within anaerobic environments.
Nature Geoscience – Springer Journals
Published: May 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.