The survival of Pacific salmon in the North Pacific in the winter and spring

The survival of Pacific salmon in the North Pacific in the winter and spring The effects of various factors (water temperature, food availability, predation, and the size of juveniles) on the survival of Pacific salmons during overwintering in open ocean waters are analyzed based on the data collected by expeditions of the Pacific Research Fisheries Center to the northwestern Pacific Ocean in the winter and spring seasons of 1986–1992 and 2009–2011, as well as in the summer seasons of 2004–2011. The temperature factor is unlikely to be a direct cause of the high salmon mortality in the ocean during the winter, as there is no clear evidence that it affects food availability for salmon. The biomass of forage zooplankton in the Subarctic Front zone in February and March is lower than that in April and June–July, but it does not decrease substantially in the winter months. Taking the fact into account that the total abundance of planktivorous nekton is also low in this area during the winter, food availability cannot be considered a crucial factor that has a serious influence on salmon mortality in this period. The difference in feeding intensity between salmon species and between their size groups in the winter and spring is determined by their life strategies. The observed variations in feeding intensity and lipid accumulation from autumn to spring are caused by cyclic seasonal changes in physiological processes in salmon rather than by the amount and availability of food resources. The low abundance of predators in subarctic waters and in the Subarctic Front zone in the winter also cannot reduce salmon abundance substantially. The probable relationship between the critical size of juveniles and their survival in the winter is considered using the example of a Sea of Okhotsk stock of pink salmon. The conclusion is that the size of juvenile pink salmon cannot always be used as a predictor of the values of its subsequent returns, because survival of salmon during the ocean period of life depends both on the initial conditions during downstream migration and on the ocean conditions that form in the winter. Thus, none of the factors above can be considered as strictly limiting the abundance of Pacific salmon in the winter. It is more probable that the survival of salmon in the ocean is influenced, to a lesser or greater extent, by the combined effects of abiotic and biotic factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

The survival of Pacific salmon in the North Pacific in the winter and spring

Loading next page...
 
/lp/springer-journals/the-survival-of-pacific-salmon-in-the-north-pacific-in-the-winter-and-3GMroiYgn8
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1134/S1063074016070087
Publisher site
See Article on Publisher Site

Abstract

The effects of various factors (water temperature, food availability, predation, and the size of juveniles) on the survival of Pacific salmons during overwintering in open ocean waters are analyzed based on the data collected by expeditions of the Pacific Research Fisheries Center to the northwestern Pacific Ocean in the winter and spring seasons of 1986–1992 and 2009–2011, as well as in the summer seasons of 2004–2011. The temperature factor is unlikely to be a direct cause of the high salmon mortality in the ocean during the winter, as there is no clear evidence that it affects food availability for salmon. The biomass of forage zooplankton in the Subarctic Front zone in February and March is lower than that in April and June–July, but it does not decrease substantially in the winter months. Taking the fact into account that the total abundance of planktivorous nekton is also low in this area during the winter, food availability cannot be considered a crucial factor that has a serious influence on salmon mortality in this period. The difference in feeding intensity between salmon species and between their size groups in the winter and spring is determined by their life strategies. The observed variations in feeding intensity and lipid accumulation from autumn to spring are caused by cyclic seasonal changes in physiological processes in salmon rather than by the amount and availability of food resources. The low abundance of predators in subarctic waters and in the Subarctic Front zone in the winter also cannot reduce salmon abundance substantially. The probable relationship between the critical size of juveniles and their survival in the winter is considered using the example of a Sea of Okhotsk stock of pink salmon. The conclusion is that the size of juvenile pink salmon cannot always be used as a predictor of the values of its subsequent returns, because survival of salmon during the ocean period of life depends both on the initial conditions during downstream migration and on the ocean conditions that form in the winter. Thus, none of the factors above can be considered as strictly limiting the abundance of Pacific salmon in the winter. It is more probable that the survival of salmon in the ocean is influenced, to a lesser or greater extent, by the combined effects of abiotic and biotic factors.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Feb 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off