Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The STT3 protein is a component of the yeast oligosaccharyltransferase complex

The STT3 protein is a component of the yeast oligosaccharyltransferase complex N-linked protein glycosylation is an essential process in eukaryotic cells. In the central reaction, the oligosaccharyltransferase (OTase) catalyzes the transfer of the oligosaccharide Glc3Man9GlcNAc2 from dolicholpyrophosphate onto asparagine residues of nascent polypeptide chains in the lumen of the endoplasmic reticulum. The product of the essential gene STT3 is required for OTase activity in vivo, but is not present in highly purified OTase preparations. Using affinity purification of a tagged Stt3 protein, we now demonstrate that other components of the OTase complex, namely Ost1p, Wbp1p and Swp1p, specifically co-purify with the Stt3 protein. In addition, different conditional stt3 alleles can be suppressed by overexpression of either OST3 and OST4, which encode small components of the OTase complex. These genetic and biochemical data show that the highly conserved Stt3p is a component of the oligosaccharyltransferase complex. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Genetics and Genomics Springer Journals

The STT3 protein is a component of the yeast oligosaccharyltransferase complex

Loading next page...
 
/lp/springer-journals/the-stt3-protein-is-a-component-of-the-yeast-oligosaccharyltransferase-h0BAFh0yyh

References (36)

Publisher
Springer Journals
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Cell Biology; Biochemistry, general; Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics
ISSN
1617-4615
eISSN
1432-1874
DOI
10.1007/s004380050611
Publisher site
See Article on Publisher Site

Abstract

N-linked protein glycosylation is an essential process in eukaryotic cells. In the central reaction, the oligosaccharyltransferase (OTase) catalyzes the transfer of the oligosaccharide Glc3Man9GlcNAc2 from dolicholpyrophosphate onto asparagine residues of nascent polypeptide chains in the lumen of the endoplasmic reticulum. The product of the essential gene STT3 is required for OTase activity in vivo, but is not present in highly purified OTase preparations. Using affinity purification of a tagged Stt3 protein, we now demonstrate that other components of the OTase complex, namely Ost1p, Wbp1p and Swp1p, specifically co-purify with the Stt3 protein. In addition, different conditional stt3 alleles can be suppressed by overexpression of either OST3 and OST4, which encode small components of the OTase complex. These genetic and biochemical data show that the highly conserved Stt3p is a component of the oligosaccharyltransferase complex.

Journal

Molecular Genetics and GenomicsSpringer Journals

Published: Nov 26, 1997

There are no references for this article.