The role of phasic norepinephrine modulations during task switching: evidence for specific effects in parietal areas

The role of phasic norepinephrine modulations during task switching: evidence for specific... Cognitive flexibility is a major requirement for successful goal-directed behavior and their neurobiological underpinnings are becoming better understood. However, the role of the norepinephrine system during task switching is largely enigmatic, despite neurobiological considerations make it likely that the norepinephrine system likely plays an important role. Theoretical considerations also suggest that the norepinephrine system mainly modulates task-switching processes when these rely upon working memory mechanisms. This topic was examined in the current system neurophysiological study integrating event-related potential (ERP) with pupil diameter data as a proximate the norepinephrine system activity. Combined with source localization methods, human brain structure, brain function, and phasic modulations by an important neurobiological system were integrated. The results show that cognitive-neurophysiological subprocesses during the actual switching processes, reflected by the N2 and P3 ERP components, are not modulated by the norepinephrine system. Rather, this system modulates preparatory processes in the fore period of stimuli signaling possible switches of response sets. The source localization results show that this is achieved by modulating neural processes in the temporo-parietal junction (BA40). Importantly, these phasic modulatory effects of the norepinephrine system were only evident when working memory processes had to be used to guide the selection of the appropriate responses for task switching. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Structure and Function Springer Journals

The role of phasic norepinephrine modulations during task switching: evidence for specific effects in parietal areas

Loading next page...
 
/lp/springer-journals/the-role-of-phasic-norepinephrine-modulations-during-task-switching-bVK229W6X0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Biomedicine; Neurosciences; Cell Biology; Neurology
ISSN
1863-2653
eISSN
1863-2661
D.O.I.
10.1007/s00429-017-1531-y
Publisher site
See Article on Publisher Site

Abstract

Cognitive flexibility is a major requirement for successful goal-directed behavior and their neurobiological underpinnings are becoming better understood. However, the role of the norepinephrine system during task switching is largely enigmatic, despite neurobiological considerations make it likely that the norepinephrine system likely plays an important role. Theoretical considerations also suggest that the norepinephrine system mainly modulates task-switching processes when these rely upon working memory mechanisms. This topic was examined in the current system neurophysiological study integrating event-related potential (ERP) with pupil diameter data as a proximate the norepinephrine system activity. Combined with source localization methods, human brain structure, brain function, and phasic modulations by an important neurobiological system were integrated. The results show that cognitive-neurophysiological subprocesses during the actual switching processes, reflected by the N2 and P3 ERP components, are not modulated by the norepinephrine system. Rather, this system modulates preparatory processes in the fore period of stimuli signaling possible switches of response sets. The source localization results show that this is achieved by modulating neural processes in the temporo-parietal junction (BA40). Importantly, these phasic modulatory effects of the norepinephrine system were only evident when working memory processes had to be used to guide the selection of the appropriate responses for task switching.

Journal

Brain Structure and FunctionSpringer Journals

Published: Oct 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off