The goal of this study was to test the usefulness of high-spatial resolution information provided by airborne imagery and soil electrical properties to define plant water restriction zones within-vineyards. The main contribution of this is to propose a study on a large area representing the regions’ vineyard diversity (different age, different varieties and different soils) located in southern France (Languedoc-Roussillon region, France). Nine non-irrigated plots were selected for this work in 2006 and 2007. In each plot, different zones were defined using the high-spatial resolution (1 m2) information provided by airborne imagery (Normalised Difference Vegetation Index, NDVI). Within each zone, measurements were conducted to assess: (i) vine water status (Pre-dawn Leaf Water Potential, PLWP), (ii) vine vegetative expression (vine trunk circumference and canopy area), (iii) soil electrical resistivity and, (iv) harvest quantity and quality. Large differences were observed for vegetative expression, yield and plant water status between the individual NDVI-defined zones. Significant differences were also observed for soil resistivity and vine trunk circumference, suggesting the temporal stability of the zoning and its relevance to defining vine water status zones. The NDVI zoning could not be related to the observed differences in quality, thus showing the limitations in using this approach to assess grape quality under non-irrigated conditions. The paper concludes with the approach that is currently being considered: using NDVI zones (corresponding to plant water restriction zones) in association with soil electrical resistivity and plant water status measurements to provide an assessment of the spatial variability of grape production at harvest.
Precision Agriculture – Springer Journals
Published: Aug 14, 2008
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue