Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Schütz, G. Kada, V. Pastushenko, H. Schindler (2000)
Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopyThe EMBO Journal, 19
I. Levental, M. Grzybek, K. Simons (2010)
Greasing their way: lipid modifications determine protein association with membrane rafts.Biochemistry, 49 30
Ottavia Golfetto, Elizabeth Hinde, E. Gratton (2013)
Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes.Biophysical journal, 104 6
K. Levental, I. Levental (2015)
Giant plasma membrane vesicles: models for understanding membrane organization.Current topics in membranes, 75
S. Mahammad, I. Parmryd (2015)
Cholesterol depletion using methyl-β-cyclodextrin.Methods in molecular biology, 1232
F. Contreras, A. Ernst, P. Haberkant, Patrik Björkholm, E. Lindahl, B. Gönen, C. Tischer, A. Elofsson, G. Heijne, C. Thiele, R. Pepperkok, F. Wieland, B. Brügger (2012)
Molecular recognition of a single sphingolipid species by a protein’s transmembrane domainNature, 481
Suvrajit Saha, Il-Hyung Lee, Anirban Polley, J. Groves, M. Rao, S. Mayor (2015)
Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actinMolecular Biology of the Cell, 26
L. Tamm, H. Mcconnell (1985)
Supported phospholipid bilayers.Biophysical journal, 47 1
Enrico Klotzsch, G. Schütz (2013)
A critical survey of methods to detect plasma membrane raftsPhilosophical Transactions of the Royal Society B: Biological Sciences, 368
Noor Momin, Stacey Lee, Avinash Gadok, David Busch, G. Bachand, C. Hayden, J. Stachowiak, D. Sasaki (2015)
Designing lipids for selective partitioning into liquid ordered membrane domains.Soft matter, 11 16
Roxann Schroeder, Erwin London, Deborah Brown (1994)
Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior.Proceedings of the National Academy of Sciences of the United States of America, 91 25
E. Sezgin, D. Waithe, Jorge Serna, C. Eggeling (2015)
Spectral Imaging to Measure Heterogeneity in Membrane Lipid PackingChemphyschem, 16
R. Dick, S. Goh, G. Feigenson, V. Vogt (2012)
HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranesProceedings of the National Academy of Sciences, 109
M. Gerl, J. Sampaio, Severino Urban, L. Kalvodova, J. Verbavatz, B. Binnington, D. Lindemann, C. Lingwood, A. Shevchenko, Cornelia Schroeder, K. Simons (2012)
Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membraneThe Journal of Cell Biology, 196
M Brameshuber (2010)
Imaging of mobile long-lived nanoplatforms in the live cell plasma membraneJ. Biol. Chem., 285
E. Gray, Gladys Diaz-Vazquez, S. Veatch (2015)
Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane VesiclesPLoS ONE, 10
E. Sezgin, P. Schwille (2012)
Model membrane platforms to study protein-membrane interactionsMolecular Membrane Biology, 29
(2012)
Shows direct specific interactions between the single-pass TMD of the coat protein I (COPI)-machinery protein p24 and a single sphingomyelin species
D. Owen, David Williamson, Astrid Magenau, K. Gaus (2012)
Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distributionNature Communications, 3
P. Shashkin, B. Dragulev, K. Ley (2005)
Macrophage differentiation to foam cells.Current pharmaceutical design, 11 23
F. Rios, M. Ferracini, Mateus Pecenin, M. Koga, Yajuan Wang, D. Ketelhuth, S. Jancar (2013)
Uptake of oxLDL and IL-10 Production by Macrophages Requires PAFR and CD36 Recruitment into the Same Lipid RaftsPLoS ONE, 8
D. Lingwood, J. Ries, P. Schwille, K. Simons (2008)
Plasma membranes are poised for activation of raft phase coalescence at physiological temperatureProceedings of the National Academy of Sciences, 105
J. Ehrig, E. Petrov, P. Schwille (2010)
Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes.Biophysical journal, 100 1
Deborah Brown, J. Rose (1992)
Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surfaceCell, 68
Jun Ando, M. Kinoshita, Jin Cui, Hiroyuki Yamakoshi, K. Dodo, K. Fujita, M. Murata, M. Sodeoka (2015)
Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopyProceedings of the National Academy of Sciences, 112
D. Lichtenberg, F. Goñi, H. Heerklotz (2005)
Detergent-resistant membranes should not be identified with membrane rafts.Trends in biochemical sciences, 30 8
J. Crane, L. Tamm (2004)
Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.Biophysical journal, 86 5
Yong Zhou, Kelsey Maxwell, E. Sezgin, Maryia Lu, Hong Liang, J. Hancock, E. Dial, L. Lichtenberger, I. Levental (2013)
Bile Acids Modulate Signaling by Functional Perturbation of Plasma Membrane Domains*The Journal of Biological Chemistry, 288
T. Fujiwara, Kokoro Iwasawa, Z. Kalay, Taka Tsunoyama, Yusuke Watanabe, Yasuhiro Umemura, H. Murakoshi, Kenichi Suzuki, Yuri Nemoto, N. Morone, A. Kusumi (2016)
Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membraneMolecular Biology of the Cell, 27
I. Vattulainen, T. Róg (2011)
Lipid simulations: a perspective on lipids in action.Cold Spring Harbor perspectives in biology, 3 4
T. Sproul, S. Malapati, Julie Kim, S. Pierce (2000)
Cutting Edge: B Cell Antigen Receptor Signaling Occurs Outside Lipid Rafts in Immature B Cells1The Journal of Immunology, 165
C. Eggeling, A. Honigmann (2016)
Closing the gap: The approach of optical and computational microscopy to uncover biomembrane organization.Biochimica et biophysica acta, 1858 10
D. Amin, R. Rutledge, S. Needle, H. Galczenski, K. Neuenschwander, A. Scotese, M. Maguire, R. Bush, D. Hele, G. Bilder, M. Perrone (1997)
RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase.The Journal of pharmacology and experimental therapeutics, 281 2
T. Sayle, J. Goodfellow (1997)
Molecular dynamics study
Joanna Podkalicka, Agnieszka Biernatowska, M. Majkowski, M. Grzybek, A. Sikorski (2015)
MPP1 as a Factor Regulating Phase Separation in Giant Plasma Membrane-Derived VesiclesBiophysical Journal, 108
A. Maguy, T. Hébert, S. Nattel (2006)
Involvement of lipid rafts and caveolae in cardiac ion channel function.Cardiovascular research, 69 4
Mónica Lozano, Zhao Liu, Eva Sunnick, A. Janshoff, Krishna Kumar, S. Boxer (2013)
Colocalization of the ganglioside G(M1) and cholesterol detected by secondary ion mass spectrometry.Journal of the American Chemical Society, 135 15
E. Sezgin, F. Can, Falk Schneider, M. Clausen, S. Galiani, T. Stanly, D. Waithe, Alexandria Colaco, A. Honigmann, D. Wüstner, F. Platt, C. Eggeling (2016)
A comparative study on fluorescent cholesterol analogs as versatile cellular reporters[S]Journal of Lipid Research, 57
Ü. Coskun, M. Grzybek, D. Drechsel, K. Simons (2011)
Regulation of human EGF receptor by lipidsProceedings of the National Academy of Sciences, 108
K. Iwabuchi (2015)
Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.Frontiers in bioscience, 20
R. Schwarzer, I. Levental, A. Gramatica, Silvia Scolari, V. Buschmann, M. Veit, A. Herrmann (2014)
The cholesterol‐binding motif of the HIV‐1 glycoprotein gp41 regulates lateral sorting and oligomerizationCellular Microbiology, 16
Alexandre Toulmay, W. Prinz (2013)
Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cellsThe Journal of Cell Biology, 202
I. Levental, M. Grzybek, K. Simons (2011)
Raft domains of variable properties and compositions in plasma membrane vesiclesProceedings of the National Academy of Sciences, 108
John Yu, Donald Fischman, Theodore Steck (1973)
Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents.Journal of supramolecular structure, 1 3
(2012)
Together with reference 27 and 92, suggests that the cell membrane contains domains with a range of properties
P. Stansfeld, M. Sansom (2011)
Molecular simulation approaches to membrane proteins.Structure, 19 11
S. Sánchez, M. Tricerri, E. Gratton (2012)
Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivoProceedings of the National Academy of Sciences, 109
C. Eggeling (2015)
Super-resolution optical microscopy of lipid plasma membrane dynamics.Essays in biochemistry, 57
(2012)
Using lipidomics, this study shows that the influenza virus envelope is enriched in sphingolipids and cholesterol compared with the apical plasma membrane from which the virus buds
A. Laganowsky, Eamonn Reading, Timothy Allison, M. Ulmschneider, M. Degiacomi, A. Baldwin, C. Robinson (2014)
Membrane proteins bind lipids selectively to modulate their structure and functionNature, 510
Sharmin Ahmed, Deborah Brown, E. London (1997)
On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes.Biochemistry, 36 36
N. Kahya, Deborah Brown, P. Schwille (2005)
Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles.Biochemistry, 44 20
E. Fridriksson, P. Shipkova, P. Shipkova, E. Sheets, D. Holowka, B. Baird, F. McLafferty (1999)
Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry.Biochemistry, 38 25
H. Mcconnell, L. Tamm, Robert Weis (1984)
Periodic structures in lipid monolayer phase transitions.Proceedings of the National Academy of Sciences of the United States of America, 81 10
R. Dror, Robert Dirks, J. Grossman, Huafeng Xu, D. Shaw (2012)
Biomolecular simulation: a computational microscope for molecular biology.Annual review of biophysics, 41
B. Machta, S. Papanikolaou, J. Sethna, S. Veatch (2010)
Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality.Biophysical journal, 100 7
K. Gowrishankar, Subhasri Ghosh, Suvrajit Saha, C. Rumamol, S. Mayor, M. Rao (2012)
Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface MoleculesCell, 149
S. Lopes, E. Goormaghtigh, B. Cabral, M. Castanho (2004)
Filipin orientation revealed by linear dichroism. Implication for a model of action.Journal of the American Chemical Society, 126 17
Veronika Mueller, C. Ringemann, A. Honigmann, Gunter Schwarzmann, R. Medda, M. Leutenegger, S. Polyakova, V. Belov, S. Hell, C. Eggeling (2011)
STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells.Biophysical journal, 101 7
S. Staubach, Hanieh Razawi, F. Hanisch (2009)
Proteomics of MUC1‐containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF‐7PROTEOMICS, 9
H. Miller, T. Castro-Gomes, M. Corrotte, Christina Tam, T. Maugel, N. Andrews, Wenxia Song (2015)
Lipid raft–dependent plasma membrane repair interferes with the activation of B lymphocytesThe Journal of Cell Biology, 211
Mónica Lozano, J. Hovis, F. Moss, S. Boxer (2016)
Dynamic Reorganization and Correlation among Lipid Raft Components.Journal of the American Chemical Society, 138 31
Thomas Zanten, S. Mayor (2015)
Current approaches to studying membrane organizationF1000Research, 4
R. Varma, S. Mayor (1998)
GPI-anchored proteins are organized in submicron domains at the cell surfaceNature, 394
M. Fritzsche, C. Erlenkämper, E. Moeendarbary, G. Charras, K. Kruse (2016)
Actin kinetics shapes cortical network structure and mechanicsScience Advances, 2
Élodie Teissier, E. Pécheur (2007)
Lipids as modulators of membrane fusion mediated by viral fusion proteinsEuropean Biophysics Journal, 36
A. Klymchenko, R. Kreder (2014)
Fluorescent probes for lipid rafts: from model membranes to living cells.Chemistry & biology, 21 1
S. Veatch, S. Keller (2003)
Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.Biophysical journal, 85 5
E. Sezgin, P. Schwille (2011)
Fluorescence techniques to study lipid dynamics.Cold Spring Harbor perspectives in biology, 3 11
K. Hanada, M. Nishijima, Y. Akamatsu, R. Pagano (1995)
Both Sphingolipids and Cholesterol Participate in the Detergent Insolubility of Alkaline Phosphatase, a Glycosylphosphatidylinositol-anchored Protein, in Mammalian Membranes (*)The Journal of Biological Chemistry, 270
S. Engel, Silvia Scolari, B. Thaa, Nils Krebs, T. Korte, A. Herrmann, M. Veit (2010)
FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts.The Biochemical journal, 425 3
V. Kiessling, Chen Wan, L. Tamm (2009)
Domain coupling in asymmetric lipid bilayers.Biochimica et biophysica acta, 1788 1
Perttu Niemelä, Samuli Ollila, M. Hyvönen, M. Karttunen, I. Vattulainen (2007)
Assessing the Nature of Lipid Raft MembranesPLoS Computational Biology, 3
Kenichi Suzuki (2016)
Single-Molecule Imaging of Signal Transduction via GPI-Anchored Receptors.Methods in molecular biology, 1376
G. Feigenson, Jeffrey Buboltz (2001)
Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol.Biophysical journal, 80 6
K. Levental, J. Lorent, Xubo Lin, Allison Skinkle, M. Surma, Emily Stockenbojer, A. Gorfe, I. Levental (2016)
Polyunsaturated Lipids Regulate Membrane Domain Stability by Tuning Membrane Order.Biophysical journal, 110 8
M. Jensen, O. Mouritsen (2004)
Lipids do influence protein function-the hydrophobic matching hypothesis revisited.Biochimica et biophysica acta, 1666 1-2
(2014)
Relates the membrane raft association of several proteins to their localization at the cell surface by showing that
J. Stachowiak, D. Richmond, T. Li, Allen Liu, S. Parekh, D. Fletcher (2008)
Unilamellar vesicle formation and encapsulation by microfluidic jettingProceedings of the National Academy of Sciences, 105
N. Komura, Kenichi Suzuki, H. Ando, Miku Konishi, Machi Koikeda, A. Imamura, R. Chadda, T. Fujiwara, H. Tsuboi, R. Sheng, W. Cho, Kazuro Furukawa, Keiko Furukawa, Y. Yamauchi, H. Ishida, A. Kusumi, M. Kiso (2016)
Raft-based interactions of gangliosides with a GPI-anchored receptor.Nature chemical biology, 12 6
A. Farnoud, A. Toledo, J. Konopka, M. Poeta, E. London (2015)
Raft-like membrane domains in pathogenic microorganisms.Current topics in membranes, 75
J. Juhász, James Davis, F. Sharom (2010)
Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.The Biochemical journal, 430 3
Kenneth Field, D. Holowka, Barbara Baird (1995)
Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling.Proceedings of the National Academy of Sciences of the United States of America, 92 20
Frederick Heberle, M. Doktorova, S. Goh, R. Standaert, J. Katsaras, G. Feigenson (2013)
Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology.Journal of the American Chemical Society, 135 40
Pallavi Varshney, V. Yadav, Neeru Saini (2016)
Lipid rafts in immune signalling: current progress and future perspectiveImmunology, 149
(1998)
First evidence for nanoscopic domains of GPI-anchored proteins in living cells
C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. Belov, B. Hein, C. Middendorff, A. Schönle, S. Hell (2009)
Direct observation of the nanoscale dynamics of membrane lipids in a living cellNature, 457
G. Wit, J. Danial, P. Kukura, M. Wallace (2015)
Dynamic label-free imaging of lipid nanodomainsProceedings of the National Academy of Sciences, 112
Agnieszka Łach, M. Grzybek, Elżbieta Heger, Justyna Korycka, Marcin Wolny, Jakub Kubiak, A. Kolondra, Dżamila Bogusławska, K. Augoff, M. Majkowski, Joanna Podkalicka, Jakub Kaczor, A. Stefanko, K. Kuliczkowski, A. Sikorski (2012)
Palmitoylation of MPP1 (Membrane-palmitoylated Protein 1)/p55 Is Crucial for Lateral Membrane Organization in Erythroid Cells*The Journal of Biological Chemistry, 287
A. Kusumi, C. Nakada, K. Ritchie, K. Murase, Kenichi Suzuki, H. Murakoshi, R. Kasai, Junko Kondo, T. Fujiwara (2005)
Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules.Annual review of biophysics and biomolecular structure, 34
J. Ipsen, G. Karlström, O. Mourtisen, H. Wennerström, M. Zuckermann (1987)
Phase equilibria in the phosphatidylcholine-cholesterol system.Biochimica et biophysica acta, 905 1
J. Robalo, A. Canto, A. Carvalho, J. Ramalho, L. Loura (2013)
Behavior of fluorescent cholesterol analogues dehydroergosterol and cholestatrienol in lipid bilayers: a molecular dynamics study.The journal of physical chemistry. B, 117 19
N. Kahya, Dag Scherfeld, K. Bacia, P. Schwille (2004)
Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy.Journal of structural biology, 147 1
D. Lingwood, B. Binnington, T. Róg, I. Vattulainen, M. Grzybek, U. Coskun, C. Lingwood, K. Simons (2011)
Cholesterol modulates glycolipid conformation and receptor activity.Nature chemical biology, 7 5
Sebastian Schuck, M. Honsho, K. Ekroos, A. Shevchenko, K. Simons (2003)
Resistance of cell membranes to different detergentsProceedings of the National Academy of Sciences of the United States of America, 100
L. Bagatolli, O. Mouritsen (2013)
Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing?Frontiers in Plant Science, 4
Maier Lorizate, Timo Sachsenheimer, B. Glass, A. Habermann, M. Gerl, H. Kräusslich, B. Brügger (2013)
Comparative lipidomics analysis of HIV‐1 particles and their producer cell membrane in different cell linesCellular Microbiology, 15
T. Friedrichson, T. Kurzchalia (1998)
Microdomains of GPI-anchored proteins in living cells revealed by crosslinkingNature, 394
S. Veatch, P. Cicuta, P. Sengupta, Aurelia Honerkamp-Smith, D. Holowka, B. Baird (2008)
Critical fluctuations in plasma membrane vesicles.ACS chemical biology, 3 5
R. Raghupathy, Anupama Anilkumar, Anirban Polley, P. Singh, Mahipal Yadav, Charles Johnson, S. Suryawanshi, Varma Saikam, Sanghapal Sawant, Aniruddha Panda, Zhongwu Guo, R. Vishwakarma, M. Rao, S. Mayor (2015)
Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored ProteinsCell, 161
Frederick Heberle, Robin Petruzielo, Jianjun Pan, Paul Drazba, N. Kučerka, R. Standaert, G. Feigenson, J. Katsaras (2013)
Bilayer thickness mismatch controls domain size in model membranes.Journal of the American Chemical Society, 135 18
D. Filipp, B. Leung, Jenny Zhang, A. Veillette, M. Julius (2004)
Enrichment of Lck in Lipid Rafts Regulates Colocalized Fyn Activation and the Initiation of Proximal Signals through TCRαβ1The Journal of Immunology, 172
A. Yamaji, Y. Sekizawa, K. Emoto, H. Sakuraba, Keizō Inoue, Hideshi Kobayashi, M. Umeda (1998)
Lysenin, a Novel Sphingomyelin-specific Binding Protein*The Journal of Biological Chemistry, 273
S. Singer, G. Nicolson (1972)
The fluid mosaic model of the structure of cell membranes.Science, 175 4023
Helgi Ingólfsson, M. Melo, Floris Eerden, C. Arnarez, Cesar López, T. Wassenaar, X. Periole, A. Vries, D. Tieleman, S. Marrink (2014)
Lipid organization of the plasma membrane.Journal of the American Chemical Society, 136 41
Satyajit Mayor, Frederick Maxfield (1995)
Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment.Molecular biology of the cell, 6 7
(2008)
Shows critical fluctuation behaviour in GPMVs, which suggests that the cell membrane is near a miscibility critical point that could be modulated by temperature
D. Köster, Kabir Husain, Elda Iljazi, Abrar Bhat, P. Bieling, R. Mullins, M. Rao, S. Mayor (2016)
Actomyosin dynamics drive local membrane component organization in an in vitro active composite layerProceedings of the National Academy of Sciences, 113
Allison Dupuy, D. Engelman (2008)
Protein area occupancy at the center of the red blood cell membraneProceedings of the National Academy of Sciences, 105
I. Morphological, R. Scott, R. Perkins, M. Zschunke, B. Hoerl, P. Maercklein (1979)
Plasma membrane vesiculation in 3T3 and SV3T3 cells. I. Morphological and biochemical characterization.Journal of cell science, 35
M. Stone, S. Shelby, Marcos Nunez, K. Wisser, S. Veatch (2017)
Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membraneseLife, 6
(2012)
Provides a compelling theoretical framework to understand how actomyosin-driven activity can create non-equilibrium clusters of membrane proteins
E. Sezgin, H. Kaiser, T. Baumgart, P. Schwille, K. Simons, I. Levental (2012)
Elucidating membrane structure and protein behavior using giant plasma membrane vesiclesNature Protocols, 7
H. Kaiser, D. Lingwood, I. Levental, J. Sampaio, L. Kalvodova, L. Rajendran, K. Simons (2009)
Order of lipid phases in model and plasma membranesProceedings of the National Academy of Sciences, 106
L. Pike (2006)
Rafts defined: a report on the Keystone symposium on lipid rafts and cell function Published, JLR Papers in Press, April 27, 2006.Journal of Lipid Research, 47
LJ Pike (2006)
Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell FunctionJ. Lipid Res., 47
Álvaro Cuesta-Marbán, J. Botet, O. Czyż, L. Cacharro, C. Gajate, Valentín Hornillos, Javier Delgado, Hui Zhang, F. Amat‐Guerri, A. Acuña, C. McMaster, J. Revuelta, V. Zaremberg, F. Mollinedo, Howard Riezman, Vz M (2013)
Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast*The Journal of Biological Chemistry, 288
Allen Liu, D. Fletcher (2006)
Actin polymerization serves as a membrane domain switch in model lipid bilayers.Biophysical journal, 91 11
P. Sengupta, T. Jovanović-Talisman, Dunja Skoko, M. Renz, S. Veatch, J. Lippincott-Schwartz (2011)
Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysisNature Methods, 8
Marissa Saunders, G. Voth (2013)
Coarse-graining methods for computational biology.Annual review of biophysics, 42
J. Pencer, T. Mills, N. Kučerka, M. Nieh, J. Katsaras (2007)
Small-angle neutron scattering to detect rafts and lipid domains.Methods in molecular biology, 398
K. Spillane, J. Ortega-Arroyo, G. Wit, C. Eggeling, H. Ewers, M. Wallace, P. Kukura (2014)
High-Speed Single-Particle Tracking of GM1 in Model Membranes Reveals Anomalous Diffusion due to Interleaflet Coupling and Molecular PinningNano Letters, 14
Hema Bhat, Takuma Kishimoto, M. Abe, A. Makino, T. Inaba, M. Murate, N. Dohmae, Atsushi Kurahashi, K. Nishibori, F. Fujimori, P. Greimel, R. Ishitsuka, Toshihide Kobayashi (2013)
Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains[S]Journal of Lipid Research, 54
E. Sezgin, I. Levental, M. Grzybek, G. Schwarzmann, Veronika Mueller, A. Honigmann, V. Belov, C. Eggeling, U. Coskun, K. Simons, P. Schwille (2012)
Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.Biochimica et biophysica acta, 1818 7
M. Fritzsche, Dong Li, Huw Colin-York, V. Chang, V. Chang, E. Moeendarbary, J. Felce, E. Sezgin, G. Charras, E. Betzig, C. Eggeling (2017)
Self-organizing actin patterns shape membrane architecture but not cell mechanicsNature Communications, 8
S. Beissert, H. He, A. Hueber, A. Lellouch, D. Metze, A. Mehling, T. Luger, T. Schwarz, S. Grabbe (1998)
Impaired cutaneous immune responses in Thy-1-deficient mice.Journal of immunology, 161 10
Frederick Heberle, Jing Wu, S. Goh, Robin Petruzielo, G. Feigenson (2010)
Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.Biophysical journal, 99 10
Anup Shah, David Chen, Akash Boda, L. Foster, Melissa Davis, M. Hill (2014)
RaftProt: mammalian lipid raft proteome databaseNucleic Acids Research, 43
J. Dinić, A. Riehl, Jeremy Adler, I. Parmryd (2015)
The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptorScientific Reports, 5
B. Ramstedt, J. Slotte (1999)
Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length.Biophysical journal, 76 2
Alfred Merrill, Gerhild Echtenll, Elaine WangS, Konrad Sandhoffl (1993)
Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ.The Journal of biological chemistry, 268 36
I. Levental, D. Lingwood, M. Grzybek, Ü. Coskun, K. Simons (2010)
Palmitoylation regulates raft affinity for the majority of integral raft proteinsProceedings of the National Academy of Sciences, 107
D. Hillyard, Cian Nutt, J. Thomson, K. Mcdonald, R. Wan, A. Cameron, P. Mark, A. Jardine (2007)
Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation.Atherosclerosis, 191 2
T. Harder, P. Scheiffele, P. Verkade, K. Simons (1998)
Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane ComponentsThe Journal of Cell Biology, 141
Supplementary Discussion
(2015)
GPI-anchored proteins do not reside in ordered domains in the live cell plasma membraneNature communications, 6
N. Barrera, Min Zhou, C. Robinson (2013)
The role of lipids in defining membrane protein interactions: insights from mass spectrometry.Trends in cell biology, 23 1
G. Özhan, E. Sezgin, Daniel Wehner, Astrid Pfister, S. Kühl, Birgit Kagermeier-Schenk, M. Kühl, P. Schwille, G. Weidinger (2013)
Lypd6 enhances Wnt/β-catenin signaling by promoting Lrp6 phosphorylation in raft plasma membrane domains.Developmental cell, 26 4
N. Gupta, A. DeFranco (2003)
Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation.Molecular biology of the cell, 14 2
J. Ortega-Arroyo, P. Kukura (2012)
Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy.Physical chemistry chemical physics : PCCP, 14 45
Karolina Tułodziecka, Barbara Diaz-Rohrer, M. Farley, R. Chan, G. Paolo, K. Levental, M. Waxham, I. Levental (2016)
Remodeling of the postsynaptic plasma membrane during neural developmentMolecular Biology of the Cell, 27
R. Kreder, Kyrylo Pyrshev, Zeinab Darwich, Oleksandr Kucherak, Y. Mély, A. Klymchenko (2015)
Solvatochromic Nile Red probes with FRET quencher reveal lipid order heterogeneity in living and apoptotic cells.ACS chemical biology, 10 6
M. Pourmousa, T. Róg, Risto Mikkeli, Llpo Vattulainen, Lukasz Solanko, D. Wüstner, N. List, J. Kongsted, M. Karttunen (2014)
Dehydroergosterol as an analogue for cholesterol: why it mimics cholesterol so well-or does it?The journal of physical chemistry. B, 118 26
E. Sezgin, Tomasz Sadowski, K. Simons (2014)
Measuring lipid packing of model and cellular membranes with environment sensitive probes.Langmuir : the ACS journal of surfaces and colloids, 30 27
Sinem Saka, A. Honigmann, C. Eggeling, S. Hell, T. Lang, S. Rizzoli (2014)
Multi-protein assemblies underlie the mesoscale organization of the plasma membraneNature Communications, 5
Michael Tisza, Weina Zhao, J. Fuentes, S. Prijic, Xiaoling Chen, I. Levental, Jeffrey Chang (2016)
Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid raftsOncotarget, 7
H. Ogiso, M. Taniguchi, T. Okazaki (2015)
Analysis of lipid-composition changes in plasma membrane microdomains[S]Journal of Lipid Research, 56
D. Barua, B. Goldstein (2012)
A Mechanistic Model of Early FcεRI Signaling: Lipid Rafts and the Question of Protection from DephosphorylationPLoS ONE, 7
A. Honigmann, Veronika Mueller, Haisen Ta, A. Schoenle, E. Sezgin, S. Hell, C. Eggeling (2014)
Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cellsNature Communications, 5
(2013)
The first demonstration of microscopic raft-like domain formation in the vacuoles of live yeast cells
Min Zhang, M. Moran, J. Round, T. Low, Viresh Patel, Tamar Tomassian, Joseph Hernandez, M. Miceli (2005)
CD45 Signals outside of Lipid Rafts to Promote ERK Activation, Synaptic Raft Clustering, and IL-2 Production1The Journal of Immunology, 174
T. Lane, D. Shukla, Kyle Beauchamp, V. Pande (2013)
To milliseconds and beyond: challenges in the simulation of protein folding.Current opinion in structural biology, 23 1
S. Wright, R. Ramos, P. Tobias, R. Ulevitch, J. Mathison (1990)
CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein.Science, 249 4975
A. Sodt, R. Pastor, E. Lyman (2015)
Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin.Biophysical journal, 109 5
(1997)
First work to highlight the lipid raft hypothesis and its potential functional relevance
Blanca Diaz-Rohrer, K. Levental, K. Simons, I. Levental (2014)
Membrane raft association is a determinant of plasma membrane localizationProceedings of the National Academy of Sciences, 111
D. Goswami, K. Gowrishankar, Sameera Bilgrami, Subhasri Ghosh, R. Raghupathy, R. Chadda, R. Vishwakarma, M. Rao, S. Mayor (2008)
Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven ActivityCell, 135
Hsiao-Mei Wu, Ying-Hsiu Lin, Tzu-Chi Yen, C. Hsieh (2016)
Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle trackingScientific Reports, 6
Michael Palmer (2001)
The family of thiol-activated, cholesterol-binding cytolysins.Toxicon : official journal of the International Society on Toxinology, 39 11
Jessica Frisz, Haley Klitzing, Kaiyan Lou, I. Hutcheon, P. Weber, J. Zimmerberg, M. Kraft (2013)
Sphingolipid Domains in the Plasma Membranes of Fibroblasts Are Not Enriched with Cholesterol*The Journal of Biological Chemistry, 288
L. Bagatolli, S. Sánchez, T. Hazlett, E. Gratton (2003)
Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers.Methods in enzymology, 360
G. Meer, Ernst Stelzer, Roel Wijnaendts-van-R, K. Simons (1987)
Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cellsThe Journal of Cell Biology, 105
D. Köster, S. Mayor (2016)
Cortical actin and the plasma membrane: inextricably intertwined.Current opinion in cell biology, 38
Yu Zhao, M. Ishigami, K. Nagao, K. Hanada, N. Kono, H. Arai, M. Matsuo, N. Kioka, K. Ueda (2015)
ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner[S]Journal of Lipid Research, 56
I. Levental, S. Veatch (2016)
The Continuing Mystery of Lipid Rafts.Journal of molecular biology, 428 24 Pt A
H. Raghu, Prasanna Sodadasu, R. Malla, C. Gondi, Norman Estes, J. Rao (2010)
Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cellsBMC Cancer, 10
T. Baumgart, A. Hammond, P. Sengupta, S. Hess, D. Holowka, B. Baird, W. Webb (2007)
Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesiclesProceedings of the National Academy of Sciences, 104
S. Sánchez, G. Gunther, M. Tricerri, E. Gratton (2011)
Methyl-β-Cyclodextrins Preferentially Remove Cholesterol from the Liquid Disordered Phase in Giant Unilamellar VesiclesThe Journal of Membrane Biology, 241
I. Prior, C. Muncke, R. Parton, J. Hancock (2003)
Direct visualization of Ras proteins in spatially distinct cell surface microdomainsThe Journal of Cell Biology, 160
I. Pottosin, Georgina Valencia-Cruz, Edgar Bonales-Alatorre, S. Shabala, Oxana Dobrovinskaya (2007)
Methyl-β-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytesPflügers Archiv - European Journal of Physiology, 454
S. Mahammad, J. Dinić, Jeremy Adler, I. Parmryd (2010)
Limited cholesterol depletion causes aggregation of plasma membrane lipid rafts inducing T cell activation.Biochimica et biophysica acta, 1801 6
Combines DRM assays, SPT and GPMVs to confirm domain-mediated interactions between GPI-anchored proteins and gangliosides
J. Lorent, I. Levental (2015)
Structural determinants of protein partitioning into ordered membrane domains and lipid rafts.Chemistry and physics of lipids, 192
T. Baumgart, G. Hunt, E. Farkas, W. Webb, G. Feigenson (2007)
Fluorescence probe partitioning between Lo/Ld phases in lipid membranes.Biochimica et biophysica acta, 1768 9
C. Dietrich, L. Bagatolli, Z. Volovyk, N. Thompson, M. Levi, K. Jacobson, E. Gratton (2001)
Lipid rafts reconstituted in model membranes.Biophysical journal, 80 3
Tian-yun Wang, J. Silvius (2003)
Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers.Biophysical journal, 84 1
Priyadarshini Pathak, E. London (2015)
The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains.Biophysical journal, 109 8
J. Larsen, M. Jensen, V. Bhatia, Søren Pedersen, T. Bjørnholm, L. Iversen, M. Uline, I. Szleifer, K. Jensen, N. Hatzakis, D. Stamou (2015)
Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases.Nature chemical biology, 11 3
H. Shogomori, A. Hammond, Anne Ostermeyer-Fay, D. Barr, G. Feigenson, E. London, Deborah Brown (2005)
Palmitoylation and Intracellular Domain Interactions Both Contribute to Raft Targeting of Linker for Activation of T Cells*Journal of Biological Chemistry, 280
M. Rao, S. Mayor (2014)
Active organization of membrane constituents in living cells.Current opinion in cell biology, 29
Arnd Pralle, P. Keller, E. Florin, K. Simons, J. Hörber (2000)
Sphingolipid–Cholesterol Rafts Diffuse as Small Entities in the Plasma Membrane of Mammalian CellsThe Journal of Cell Biology, 148
I. Levental, F. Byfield, P. Chowdhury, F. Gai, T. Baumgart, P. Janmey (2009)
Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles.The Biochemical journal, 424 2
K. Simons, E. Ikonen (1997)
Functional rafts in cell membranesNature, 387
Pranav Sharma, R. Varma, R. Sarasij, Ira, K. Gousset, G. Krishnamoorthy, M. Rao, M. Rao, S. Mayor (2004)
Nanoscale Organization of Multiple GPI-Anchored Proteins in Living Cell MembranesCell, 116
L. Wawrezinieck, H. Rigneault, D. Marguet, P. Lenne (2005)
Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.Biophysical journal, 89 6
(2009)
Reports differential diffusion behaviour of phospholipids and sphingolipids in the plasma membrane of live cells using super-resolution STED microscopy combined with FCS
A. Honigmann, S. Sadeghi, J. Keller, S. Hell, C. Eggeling, R. Vink (2014)
A lipid bound actin meshwork organizes liquid phase separation in model membraneseLife, 3
K. Simons, W. Vaz (2004)
Model systems, lipid rafts, and cell membranes.Annual review of biophysics and biomolecular structure, 33
Matej Skočaj, Nataša Resnik, Maja Grundner, K. Ota, Nejc Rojko, V. Hodnik, G. Anderluh, A. Sobota, P. Maček, P. Veranič, K. Sepčič (2014)
Tracking Cholesterol/Sphingomyelin-Rich Membrane Domains with the Ostreolysin A-mCherry ProteinPLoS ONE, 9
A. Sodt, Michael Sandar, K. Gawrisch, R. Pastor, E. Lyman (2014)
The molecular structure of the liquid-ordered phase of lipid bilayers.Journal of the American Chemical Society, 136 2
T. Parasassi, G. Stasio, G. Ravagnan, R. Rusch, E. Gratton (1991)
Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence.Biophysical journal, 60 1
E. Sezgin, T. Gutmann, Tomasz Buhl, R. Dirkx, M. Grzybek, Ü. Coskun, M. Solimena, K. Simons, I. Levental, P. Schwille (2015)
Adaptive Lipid Packing and Bioactivity in Membrane DomainsPLoS ONE, 10
Suvrajit Saha, R. Raghupathy, S. Mayor (2015)
Homo-FRET imaging highlights the nanoscale organization of cell surface molecules.Methods in molecular biology, 1251
Kwan-Wook Ahn, N. Sampson (2004)
Cholesterol oxidase senses subtle changes in lipid bilayer structure.Biochemistry, 43 3
Shows that cholesterol and sphingomyelin reorganize with ganglioside, demonstrating that there is an attractive interaction between these raft constituents
Dawei Shi, Xiangdong Lv, Zhao Zhang, Xiaofeng Yang, Zhaocai Zhou, Lei Zhang, Yun Zhao (2013)
Smoothened Oligomerization/Higher Order Clustering in Lipid Rafts Is Essential for High Hedgehog Activity Transduction*The Journal of Biological Chemistry, 288
D. Lingwood, K. Simons (2010)
Lipid Rafts As a Membrane-Organizing PrincipleScience, 327
Katharina Beck-García, Esmeralda Beck-García, S. Bohler, Carina Zorzin, E. Sezgin, I. Levental, B. Alarcón, W. Schamel (2015)
Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains.Biochimica et biophysica acta, 1853 4
Thomas Zanten, A. Cambi, M. Koopman, B. Joosten, C. Figdor, M. Garcia-Parajo (2009)
Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesionProceedings of the National Academy of Sciences, 106
T. Parasassi, E. Krasnowska, L. Bagatolli, E. Gratton (1998)
Laurdan and Prodan as Polarity-Sensitive Fluorescent Membrane ProbesJournal of Fluorescence, 8
(2014)
why it mimics cholesterol so well — or does it? J
M. Moertelmaier, Mario Brameshuber, Mario Linimeier, G. Schütz, H. Stockinger (2005)
Thinning out clusters while conserving stoichiometry of labelingApplied Physics Letters, 87
H. Kaiser, A. Orłowski, T. Róg, T. Nyholm, W. Chai, T. Feizi, D. Lingwood, I. Vattulainen, K. Simons (2011)
Lateral sorting in model membranes by cholesterol-mediated hydrophobic matchingProceedings of the National Academy of Sciences, 108
J. Korlach, P. Schwille, W. Webb, G. Feigenson (1999)
Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy.Proceedings of the National Academy of Sciences of the United States of America, 96 15
Heiko Keller, Maier Lorizate, P. Schwille (2009)
PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems.Chemphyschem : a European journal of chemical physics and physical chemistry, 10 16
C. Gajate, F. Mollinedo (2007)
Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts.Blood, 109 2
Cellular membranes are laterally heterogeneous and consist of transient and dynamic domains with varying properties, which prominently include ordered lipid-driven domains that are referred to as lipid (or membrane) rafts. Membrane domains can be induced and regulated by a variety of interactions, which include specific lipid–lipid and lipid–protein interactions, bulk membrane properties, and interactions between membrane components and the underlying cytoskeleton. Advanced microscopy and biochemistry techniques facilitate the study of membrane domains; however, these domains still elude direct in vivo visualization. The multiplicity of possible organizational states and their context-dependent nature most likely account for experimental inconsistencies. Membrane rafts potentially have crucial physiological roles across cell types that range from immune cells to cancer cells. Membrane domains are conserved throughout the domains of life, which supports their functional importance in biological systems.
Nature Reviews Molecular Cell Biology – Springer Journals
Published: Mar 30, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.