The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests

The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval,... Small forest dwelling mammals are considered to be major consumers and vectors of hypogeous ectomycorrhizal (ECM) fungi, which have lost the ability of active spore discharge. Fungal spore dispersal by mycophagy is deemed an important process involved in forest regeneration, resilience and vitality, primarily based on evidence from Australia and the Pacific Northwestern USA, but is poorly known for Central European mountainous forests thus far. Small mammal mycophagy was investigated by live trapping and microscopical analysis of faecal samples. All small mammal species recorded (Myodes glareolus, Microtus agrestis, Pitymys subterraneus, Apodemus spp., Glis glis, Sorex spp.) had ingested spores of ECM fungi, albeit in varying amounts. My. glareolus was found to be the most important vector of ECM fungal spores, both in quantity and diversity. Species of the genus Sorex seem to play a hitherto underestimated role as dispersers of fungal spores. Glis glis is likely to be an important vector owing to its large home range. Hypogeous ECM basidiomycetes accounted for most spores found in the faecal samples. The frequency of various genera of hypogeous ECM ascomycetes and ECM epigeous fungi was much lower. Comparison with null models indicated a non-random structure of the mycophagy network similar to other mutualistic bipartite networks. Mycophagy can be considered (1) to contribute to nutrition of small forest mammals, (2) to play a pivotal role for forest regeneration and functioning by providing mycorrhizal inoculum to tree seedlings and (3) to be vital for reproduction and diversity of the still poorly known hypogeous fungi. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oecologia Springer Journals

The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests

Loading next page...
 
/lp/springer-journals/the-interrelationship-of-mycophagous-small-mammals-and-ectomycorrhizal-2gP9L04sqW
Publisher
Springer Journals
Copyright
Copyright © 2012 by The Author(s)
Subject
Life Sciences; Plant Sciences; Ecology
ISSN
0029-8549
eISSN
1432-1939
D.O.I.
10.1007/s00442-012-2303-2
Publisher site
See Article on Publisher Site

Abstract

Small forest dwelling mammals are considered to be major consumers and vectors of hypogeous ectomycorrhizal (ECM) fungi, which have lost the ability of active spore discharge. Fungal spore dispersal by mycophagy is deemed an important process involved in forest regeneration, resilience and vitality, primarily based on evidence from Australia and the Pacific Northwestern USA, but is poorly known for Central European mountainous forests thus far. Small mammal mycophagy was investigated by live trapping and microscopical analysis of faecal samples. All small mammal species recorded (Myodes glareolus, Microtus agrestis, Pitymys subterraneus, Apodemus spp., Glis glis, Sorex spp.) had ingested spores of ECM fungi, albeit in varying amounts. My. glareolus was found to be the most important vector of ECM fungal spores, both in quantity and diversity. Species of the genus Sorex seem to play a hitherto underestimated role as dispersers of fungal spores. Glis glis is likely to be an important vector owing to its large home range. Hypogeous ECM basidiomycetes accounted for most spores found in the faecal samples. The frequency of various genera of hypogeous ECM ascomycetes and ECM epigeous fungi was much lower. Comparison with null models indicated a non-random structure of the mycophagy network similar to other mutualistic bipartite networks. Mycophagy can be considered (1) to contribute to nutrition of small forest mammals, (2) to play a pivotal role for forest regeneration and functioning by providing mycorrhizal inoculum to tree seedlings and (3) to be vital for reproduction and diversity of the still poorly known hypogeous fungi.

Journal

OecologiaSpringer Journals

Published: Apr 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off