The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey

The effect of learning on the face selective responses of neurons in the cortex in the superior... 221 76 76 1 1 E. T. Rolls G. C. Baylis M. E. Hasselmo V. Nalwa Department of Experimental Psychology University of Oxford South Parks Road OX1 3UD Oxford UK Department of Psychology University of California at San Diego 92037 La Jolla CA USA Division of Biology California Institute of Technology 91125 Pasadena CA USA Department of Psychology University of Delhi, Kamala Nehru College 110049 New Delhi India Summary Neurophysiological studies have shown that some neurons in the cortex in the superior temporal sulcus and the inferior temporal gyrus of macaque monkeys respond to faces. These neurons provided a consistently identifiable substrate with which studies of the storage of visual information were performed. To determine whether face responsive neurons change how much they respond to different novel faces as they become familiar, neurons were tested with two experimental designs. In the first experiment, 22 neurons were tested on their responsiveness to the different members of a large set of novel faces as the set was presented repeatedly until the faces became familiar. 6 neurons altered the relative degree to which they responded to the different members of the set between the first two presentations and subsequent presentations. In a control condition, only 1 out of 17 neurons showed a significant response difference between the first two presentations and subsequent presentations when the experiment started with faces which were already familiar to the monkey. In the second experiment, 26 neurons were tested on their responsiveness to the different members of a set of familiar faces before and after the addition of a novel face to the set. 5 neurons altered the relative degree in which they responded to the different members of the set of familiar faces after addition of a novel face. It is suggested that these changes in neuronal responsiveness to different stimuli reflect the setting up of an ensemble encoded representation of face stimuli. This alteration of neuronal responsiveness as novel faces become familiar suggests that face responsive neurons may store information useful in visual recognition. In addition to this relatively long-term alteration of relative neuronal responsiveness to different stimuli, it was found that a large number of cells showed a higher mean response to the first presentation of a set of novel faces than to subsequent presentations of the faces. However, the response to the first presentation of a set of familiar faces was also higher than to subsequent presentations in that sequence. This pattern indicates a short term recency effect in the response of these neurons to visual stimuli which is similar to that previously reported (Baylis and Rolls 1987). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey

Loading next page...
 
/lp/springer-journals/the-effect-of-learning-on-the-face-selective-responses-of-neurons-in-lm0U6b1efd
Publisher
Springer Journals
Copyright
Copyright © 1989 by Springer-Verlag
Subject
Biomedicine; Neurosciences; Neurology
ISSN
0014-4819
eISSN
1432-1106
DOI
10.1007/BF00253632
Publisher site
See Article on Publisher Site

Abstract

221 76 76 1 1 E. T. Rolls G. C. Baylis M. E. Hasselmo V. Nalwa Department of Experimental Psychology University of Oxford South Parks Road OX1 3UD Oxford UK Department of Psychology University of California at San Diego 92037 La Jolla CA USA Division of Biology California Institute of Technology 91125 Pasadena CA USA Department of Psychology University of Delhi, Kamala Nehru College 110049 New Delhi India Summary Neurophysiological studies have shown that some neurons in the cortex in the superior temporal sulcus and the inferior temporal gyrus of macaque monkeys respond to faces. These neurons provided a consistently identifiable substrate with which studies of the storage of visual information were performed. To determine whether face responsive neurons change how much they respond to different novel faces as they become familiar, neurons were tested with two experimental designs. In the first experiment, 22 neurons were tested on their responsiveness to the different members of a large set of novel faces as the set was presented repeatedly until the faces became familiar. 6 neurons altered the relative degree to which they responded to the different members of the set between the first two presentations and subsequent presentations. In a control condition, only 1 out of 17 neurons showed a significant response difference between the first two presentations and subsequent presentations when the experiment started with faces which were already familiar to the monkey. In the second experiment, 26 neurons were tested on their responsiveness to the different members of a set of familiar faces before and after the addition of a novel face to the set. 5 neurons altered the relative degree in which they responded to the different members of the set of familiar faces after addition of a novel face. It is suggested that these changes in neuronal responsiveness to different stimuli reflect the setting up of an ensemble encoded representation of face stimuli. This alteration of neuronal responsiveness as novel faces become familiar suggests that face responsive neurons may store information useful in visual recognition. In addition to this relatively long-term alteration of relative neuronal responsiveness to different stimuli, it was found that a large number of cells showed a higher mean response to the first presentation of a set of novel faces than to subsequent presentations of the faces. However, the response to the first presentation of a set of familiar faces was also higher than to subsequent presentations in that sequence. This pattern indicates a short term recency effect in the response of these neurons to visual stimuli which is similar to that previously reported (Baylis and Rolls 1987).

Journal

Experimental Brain ResearchSpringer Journals

Published: Jun 1, 1989

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off