Access the full text.
Sign up today, get DeepDyve free for 14 days.
Irving Fritz (1955)
The effect of muscle extracts on the oxidation of palmitic acid by liver slices and homogenates.Acta physiologica Scandinavica, 34 4
Carnitine is a trimethylamine molecule that plays a unique role in cell energy metabolism. Mitochondrial betaoxidation of long-chain fatty acids, the major process by which fatty acids are oxidized, is ubiquitously dependent on carnitine. Control of mitochondrial beta-oxidation through carnitine adapts to differing requirements in different tissues. The physiological role of carnitine and its system in body composition is understood from insights into skeletal muscle metabolism, which converge into the metabolic heterogeneity of muscle fibers, and contractile properties that are correlated with phenotypes of resistance to fatigue. In skeletal muscle, the importance of the function of the carnitine system in the control and regulation of fuel partitioning not only relates to the metabolism of fatty acids and the capacity for fatty acid utilization, but also to systemic fat balance and insulin resistance. The carnitine system is shown to be determinant in insulin regulation of fat and glucose metabolic rate in skeletal muscle, this being critical in determining body composition and relevant raised levels of risk factors for cardiovascular disease, obesity, hypertension, and type 2 diabetes.
Acta Diabetologica – Springer Journals
Published: Oct 1, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.