Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Synthesis and characterization of tin telluride inorganic/organic composite materials with nanoscale periodicity through solution-phase self-assembly: a new class of composite materials based on Zintl cluster self-oligomerization

Synthesis and characterization of tin telluride inorganic/organic composite materials with... In this work, we demonstrate the synthesis of semiconducting tin telluride inorganic/organic composite materials with nanoscale periodicity prepared using solution phase self-assembly. Oligomerization of anionic SnTe 4 4− clusters by halogen-mediated tellurium elimination in the presence of surfactant leads to the formation of a meosotructured composite. The composites initially forms as a mixture of mesophases, usually some combination of a layered phase and a phase based on cylindrical building blocks. Post synthetic treatment leads to a solid-state structural change which converts the composites to a single mesophase architecture with a hexagonal honeycomb (p6mm) morphology on the nanometer length scale. A by product of this reaction, however, is bulk tellurium. Changes in the electronic structure of the materials during synthesis and solid-state restructuring are probed using electron spin resonance (ESR) spectroscopy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis and characterization of tin telluride inorganic/organic composite materials with nanoscale periodicity through solution-phase self-assembly: a new class of composite materials based on Zintl cluster self-oligomerization

Loading next page...
1
 
/lp/springer-journals/synthesis-and-characterization-of-tin-telluride-inorganic-organic-eYBORsa2qH

References (39)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1163/156856707779160816
Publisher site
See Article on Publisher Site

Abstract

In this work, we demonstrate the synthesis of semiconducting tin telluride inorganic/organic composite materials with nanoscale periodicity prepared using solution phase self-assembly. Oligomerization of anionic SnTe 4 4− clusters by halogen-mediated tellurium elimination in the presence of surfactant leads to the formation of a meosotructured composite. The composites initially forms as a mixture of mesophases, usually some combination of a layered phase and a phase based on cylindrical building blocks. Post synthetic treatment leads to a solid-state structural change which converts the composites to a single mesophase architecture with a hexagonal honeycomb (p6mm) morphology on the nanometer length scale. A by product of this reaction, however, is bulk tellurium. Changes in the electronic structure of the materials during synthesis and solid-state restructuring are probed using electron spin resonance (ESR) spectroscopy.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 25, 2009

There are no references for this article.