Access the full text.
Sign up today, get DeepDyve free for 14 days.
This study aims to synthesize and characterize hydroxyapatite (HAp) bio-ceramic powder. Calcination treatment was applied to produce the hydroxyapatite powders from Camelus bone as an eco-friendly and inexpensive source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray spectrometry (EDS), and atomic force microscopy (AFM) were carried out to characterize the synthesized powder. XRD results showed that material obtained at calcination temperature (1000 °C) is a HAp according to (ICDD 00-024-0033) pattern in a 1.6557 Ca/P molar ratio and the chemical composition is Ca5(PO4)3(OH). The FTIR and Raman spectra confirm the formation of HAp by the presence of peaks corresponding to (PO4)3− and OH− groups, which are of great importance in HAp molecules. The experimental results of FESEM and AFM showed that the shape of the hydroxyapatite particles was irregular with the particle size ranging from 79 nm to 0.9 μm.
Journal of the Australian Ceramic Society – Springer Journals
Published: Sep 8, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.