Surface wettability effects on flow in rough wall nanochannels

Surface wettability effects on flow in rough wall nanochannels The effect of rough-wall/fluid interaction on flow in nanochannels is investigated by NEMD. Hydrophobic and hydrophilic surfaces are studied for walls with nearly atomic-size rectangular protrusions and cavities. Our NEMD simulations reveal that the number of liquid atoms temporarily trapped in the cavities is affected by the strength of the potential energy inside the cavities. Regions of low potential energy are possible trapping locations. Fluid atom localization is also affected by the hydrophilicity/hydrophobicity of the surface. Potential energy is greater between two successive hydrophilic protrusions, compared to hydrophobic ones. Moreover, groove size and wall wettability are factors that control effective slip length. Surface roughness and wall wettability have to be taken into account in the design of nanofluidic devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microfluids and Nanofluids Springer Journals

Surface wettability effects on flow in rough wall nanochannels

Loading next page...
 
/lp/springer-journals/surface-wettability-effects-on-flow-in-rough-wall-nanochannels-NiTt86pFiH
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Industrial Chemistry/Chemical Engineering; Biomedical Engineering; Engineering Fluid Dynamics
ISSN
1613-4982
eISSN
1613-4990
D.O.I.
10.1007/s10404-011-0845-y
Publisher site
See Article on Publisher Site

Abstract

The effect of rough-wall/fluid interaction on flow in nanochannels is investigated by NEMD. Hydrophobic and hydrophilic surfaces are studied for walls with nearly atomic-size rectangular protrusions and cavities. Our NEMD simulations reveal that the number of liquid atoms temporarily trapped in the cavities is affected by the strength of the potential energy inside the cavities. Regions of low potential energy are possible trapping locations. Fluid atom localization is also affected by the hydrophilicity/hydrophobicity of the surface. Potential energy is greater between two successive hydrophilic protrusions, compared to hydrophobic ones. Moreover, groove size and wall wettability are factors that control effective slip length. Surface roughness and wall wettability have to be taken into account in the design of nanofluidic devices.

Journal

Microfluids and NanofluidsSpringer Journals

Published: Jul 22, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off