Surface heat fluxes during hot events

Surface heat fluxes during hot events We selected surface flux datasets to investigate the heat fluxes during “hot events”; (HEs), defined as short-term, large-scale phenomena involving very high sea surface temperature (SST). Validation of the heat fluxes against in-situ ones, which are estimated from in-situ observation in HE sampling conditions, shows the accuracies (bias ± RMS error) of net shortwave radiation, net long wave radiation, latent heat and sensible heat fluxes are 20 ± 45.0 W m−2, −9 ± 12.3 W m−2, −2.3 ± 31.5 W m−2 and 1.5 ± 5.0 W m−2, respectively. Statistical analyses of HEs show that, during these events, net solar radiation remains high and then decreases from 246 to 220 W m−2, while latent heat is low and then increases from 100 W m−2 to 124 W m−2. Histogram peaks indicate net solar radiation of 270 W m−2 and latent heat flux of 90 W m−2 during HEs. Further, HEs are shown to evolve in three phases: formation, mature, and ending phases. Mean heat gain (HG) in the HE formation phase of 60 W m−2 is larger than the reasonably estimated annual mean HG range of 0–25 W m−2 in the Indo-Pacific Warm Pool. Such large daily HG in the HE formation phase can be expected to increase SSTs and produce large amplitudes of diurnal SST variations during HEs, which have been observed by both satellite and in-situ measurements in our previous studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Oceanography Springer Journals

Surface heat fluxes during hot events

Loading next page...
 
/lp/springer-journals/surface-heat-fluxes-during-hot-events-I8LWSJV6LT
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Earth Sciences; Freshwater & Marine Ecology; Oceanography
ISSN
0916-8370
eISSN
1573-868X
D.O.I.
10.1007/s10872-009-0051-7
Publisher site
See Article on Publisher Site

Abstract

We selected surface flux datasets to investigate the heat fluxes during “hot events”; (HEs), defined as short-term, large-scale phenomena involving very high sea surface temperature (SST). Validation of the heat fluxes against in-situ ones, which are estimated from in-situ observation in HE sampling conditions, shows the accuracies (bias ± RMS error) of net shortwave radiation, net long wave radiation, latent heat and sensible heat fluxes are 20 ± 45.0 W m−2, −9 ± 12.3 W m−2, −2.3 ± 31.5 W m−2 and 1.5 ± 5.0 W m−2, respectively. Statistical analyses of HEs show that, during these events, net solar radiation remains high and then decreases from 246 to 220 W m−2, while latent heat is low and then increases from 100 W m−2 to 124 W m−2. Histogram peaks indicate net solar radiation of 270 W m−2 and latent heat flux of 90 W m−2 during HEs. Further, HEs are shown to evolve in three phases: formation, mature, and ending phases. Mean heat gain (HG) in the HE formation phase of 60 W m−2 is larger than the reasonably estimated annual mean HG range of 0–25 W m−2 in the Indo-Pacific Warm Pool. Such large daily HG in the HE formation phase can be expected to increase SSTs and produce large amplitudes of diurnal SST variations during HEs, which have been observed by both satellite and in-situ measurements in our previous studies.

Journal

Journal of OceanographySpringer Journals

Published: Nov 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off