Structural mechanics of semicrystalline polymers prior to the yield point: a review

Structural mechanics of semicrystalline polymers prior to the yield point: a review The review focuses on the current studies of the deformation response and accompanying structural transformations of thermoplastic semicrystalline polymers subjected to uniaxial tension prior to the yield point. The mechanisms of strain-induced cavitation of amorphous layers and damages of crystalline lamellae are analyzed in line with novel results on the deformation behavior of solid polymers at temperatures exceeding the glass transition point. The coupling of viscoelastic and plastic deformation mechanisms with the small-strain structural transformations is critically discussed on the basis of the advanced theoretical modeling of mechanical properties of semicrystalline polymers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Structural mechanics of semicrystalline polymers prior to the yield point: a review

Loading next page...
 
/lp/springer-journals/structural-mechanics-of-semicrystalline-polymers-prior-to-the-yield-XcOJfNi7rp
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-012-6620-y
Publisher site
See Article on Publisher Site

Abstract

The review focuses on the current studies of the deformation response and accompanying structural transformations of thermoplastic semicrystalline polymers subjected to uniaxial tension prior to the yield point. The mechanisms of strain-induced cavitation of amorphous layers and damages of crystalline lamellae are analyzed in line with novel results on the deformation behavior of solid polymers at temperatures exceeding the glass transition point. The coupling of viscoelastic and plastic deformation mechanisms with the small-strain structural transformations is critically discussed on the basis of the advanced theoretical modeling of mechanical properties of semicrystalline polymers.

Journal

Journal of Materials ScienceSpringer Journals

Published: Jun 19, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off