Structural Implications of Placing Cationic Residues at either the NH2- or COOH-Terminus in a Pore-forming Synthetic Peptide

Structural Implications of Placing Cationic Residues at either the NH2- or COOH-Terminus in a... Restoration of chloride conductance via introduction of an anion-selective pore, formed by a channel-forming peptide, has been hypothesized as a novel treatment modality for patients with cystic fibrosis. Delivery of these peptides from an aqueous environment in the absence of organic solvents is paramount. M2GlyR peptides, designed based on the glycine receptor, insert into lipid bilayers and polarized epithelial cells and assemble spontaneously into chloride-conducting pores. Addition of 4 lysine residues to either terminus increases the solubility of M2GlyR peptides. Both orientations of the helix within the membrane form an anion-selective pore, however, differences in solubility, associations and channel-forming activity are observed. To determine how the positioning of the lysine residues affects these properties, structural characteristics of the lysyl-modified peptides were explored utilizing chemical cross-linking, NMR and molecular modeling. Initial model structures of the a-helical peptides predict that lysine residues at the COOH-terminus form a capping structure by folding back to form hydrogen bonds with backbone carbonyl groups and hydroxyl side chains of residues in the helical segment of the peptide. In contrast, lysine residues at the NH2-terminus form fewer H-bonds and extend away from the helical backbone. Results from NMR and chemical cross-linking support the model structures. The C-cap formed by H-bonding of lysine residues is likely to account for the different biophysical properties observed between NH2- and COOH-terminal-modified M2GlyR peptides. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Structural Implications of Placing Cationic Residues at either the NH2- or COOH-Terminus in a Pore-forming Synthetic Peptide

Loading next page...
 
/lp/springer-journals/structural-implications-of-placing-cationic-residues-at-either-the-nh2-MRQ9FQLBEb
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1027-3
Publisher site
See Article on Publisher Site

Abstract

Restoration of chloride conductance via introduction of an anion-selective pore, formed by a channel-forming peptide, has been hypothesized as a novel treatment modality for patients with cystic fibrosis. Delivery of these peptides from an aqueous environment in the absence of organic solvents is paramount. M2GlyR peptides, designed based on the glycine receptor, insert into lipid bilayers and polarized epithelial cells and assemble spontaneously into chloride-conducting pores. Addition of 4 lysine residues to either terminus increases the solubility of M2GlyR peptides. Both orientations of the helix within the membrane form an anion-selective pore, however, differences in solubility, associations and channel-forming activity are observed. To determine how the positioning of the lysine residues affects these properties, structural characteristics of the lysyl-modified peptides were explored utilizing chemical cross-linking, NMR and molecular modeling. Initial model structures of the a-helical peptides predict that lysine residues at the COOH-terminus form a capping structure by folding back to form hydrogen bonds with backbone carbonyl groups and hydroxyl side chains of residues in the helical segment of the peptide. In contrast, lysine residues at the NH2-terminus form fewer H-bonds and extend away from the helical backbone. Results from NMR and chemical cross-linking support the model structures. The C-cap formed by H-bonding of lysine residues is likely to account for the different biophysical properties observed between NH2- and COOH-terminal-modified M2GlyR peptides.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Dec 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off