Stress hormone and male reproductive function

Stress hormone and male reproductive function The Leydig cell is the primary source of testosterone in males. Levels of testosterone in circulation are determined by the steroidogenic capacities of individual Leydig cells and the total numbers of Leydig cells per testis. Stress-induced increases in serum glucocorticoid concentrations inhibit testosterone-biosynthetic enzyme activity, leading to decreased rates of testosterone secretion. It is unclear, however, whether the excessive glucocorticoid stimulation also affects total Leydig cell numbers through induction of apoptosis and thereby contributes to the stress-induced suppression of androgen levels. Exposure of Leydig cells to high concentrations of corticosterone (CORT, the endogenously secreted glucocorticoid in rodents) increases their frequency of apoptosis. Studies of immobilization stress indicate that stress-induced increases in CORT are directly responsible for Leydig cell apoptosis. Access to glucocorticoid receptors in Leydig cells is modulated by oxidative inactivation of glucocorticoid by 11β-hydroxysteroid dehydrogenase (11βHSD). Under basal levels of glucocorticoid, sufficient levels of glucocorticoid metabolism occur and there is likely to be minimal binding of the glucocorticoid receptor. We have established that Leydig cells express type 1 11βHSD, an oxidoreductase, and type 2, a unidirectional oxidase. Generation of redox potential through synthesis of the enzyme cofactor NADPH, a byproduct of glucocorticoid metabolism by 11βHSD-1, may potentiate testosterone biosynthesis, as NADPH is the cofactor used by steroidogenic enzymes such as type 3 17β-hydroxysteroid dehydrogenase. In this scenario, inhibition of steroidogenesis will only occur under stressful conditions when high input amounts of CORT exceed the capacity of oxidative inaction by 11βHSD. Changes in autonomic catecholaminergic activity may contribute to suppressed Leydig cell function during stress, and may explain the rapid onset of inhibition. However, recent analysis of glucocorticoid action in Leydig cells indicates the presence of a fast, non-genomic pathway that will merit further investigation. Cell and Tissue Research Springer Journals

Loading next page...
Copyright © 2005 by Springer-Verlag
Biomedicine; Human Genetics; Proteomics; Molecular Medicine
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial