Access the full text.
Sign up today, get DeepDyve free for 14 days.
Dieter Leitmann (1977)
The Distribution of Prime Numbers in Sequences of the Form [f(n)]Proceedings of The London Mathematical Society
R. Baker, W. Banks, Jorg Brudern, I. Shparlinski, Andreas Weingartner (2012)
Piatetski-Shapiro sequencesActa Arithmetica, 157
Ivan Stux (1975)
Distribution of squarefree integers in non-linear sequences.Pacific Journal of Mathematics, 59
G. Rieger (1978)
REMARK ON A PAPER OF STUX CONCERNING SQUAREFREE NUMBERS IN NON-LINEAR SEQUENCESPacific Journal of Mathematics, 78
W. Banks, Victor Guo, I. Shparlinski (2016)
Almost primes of the form ⌊pc⌋Indagationes Mathematicae, 27
D. Suryanarayana, V. Prasad (1971)
The number of k-free divisors of an integerActa Arithmetica, 17
J. Deshouillers (2019)
A remark on cube-free numbers in Segal-Piatestki-Shapiro sequencesHardy-Ramanujan Journal
Xiaodong Cao, W. Zhai (1998)
The distribution of square-free numbers of the form $[n^c]$Journal de Theorie des Nombres de Bordeaux, 10
Min Zhang, Jinjia Li (2017)
Distribution of cube-free numbers with form [nc]Frontiers of Mathematics in China, 12
R. Baker, W. Banks (2015)
CHARACTER SUMS WITH PIATETSKI-SHAPIRO SEQUENCESQuarterly Journal of Mathematics, 66
Kui Liu, I. Shparlinski, Tianping Zhang (2016)
On squares in Piatetski–Shapiro sequencesFunctiones et Approximatio Commentarii Mathematici
R. Baker, W. Banks, Zhenyu Guo, Aaron Yeager (2014)
Piatetski-Shapiro primes from almost primesMonatshefte für Mathematik, 174
R. Baker (2014)
THE INTERSECTION OF PIATETSKI-SHAPIRO SEQUENCESMathematika, 60
A. Walfisz (1963)
Weylsche Exponentialsummen in der neueren Zahlentheorie
Clive Jones (2016)
On the Distribution of Prime NumbersviXra
Yildirim Akbal, A. Gülog̃lu (2016)
WARING’S PROBLEM WITH PIATETSKI-SHAPIRO NUMBERSMathematika, 62
T. Apostol (1976)
Introduction to analytic number theory
(1963)
Mathematische Forschungsberichte XV VEB Deutscher Verlag der Wissenschaften
C. Hooley (1973)
On the Distribution of Square-Free NumbersCanadian Journal of Mathematics, 25
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
A positive integer n is called square-full if for every prime p|n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p\vert n$$\end{document}, also p2|n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p^2\vert n$$\end{document}. Piatetski–Shapiro sequences (PS-sequences) are defined by Nc=(⌊nc⌋)n∈N,(c>1,c∉N),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\mathbb {N}}^c=(\lfloor n^c \rfloor )_{n\in {\mathbb {N}}}, \quad (c>1, c\notin {\mathbb {N}}), \end{aligned}$$\end{document}where ⌊z⌋\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lfloor z\rfloor $$\end{document} is the integer part of a real z. In this paper we investigate the distribution of square-full numbers in Piatetski–Shapiro sequences.Résumé Un entier positif n est appelé un nombre puissant si pour chaque nombre premier p qui divise n, on a p2∣n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p^2\mid n$$\end{document}. Les séquences de Piatetski–Shapiro (PS-séquences) sont définies par Nc=(⌊nc⌋)n∈N,(c>1,c∉N),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\mathbb {N}}^c=(\lfloor n^c \rfloor )_{n\in {\mathbb {N}}}, \ \ \ \ (c>1, c\notin {\mathbb {N}}), \end{aligned}$$\end{document}oú ⌊z⌋\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lfloor z\rfloor $$\end{document} est la partie entie entiére d’un reél z. Dans cet article, nous étudions la distribution des nombres puissants dans des séquences de Piatetski–Shapiro.
Annales mathématiques du Québec – Springer Journals
Published: Oct 15, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.