Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Stanley (2009)
A Survey of Alternating PermutationsarXiv: Combinatorics
R Ehrenborg (1998)
273J. Algebraic Combin., 8
N. Sloane (2003)
The On-Line Encyclopedia of Integer SequencesElectron. J. Comb., 1
Yoann Gelineau, Heesung Shin, Jiang Zeng (2010)
Bijections for Entringer familiesEur. J. Comb., 32
(iii) u is a child of v which is a terminal node in π ′ j − 1 , say with ℓ ( v ) = y and sign ( v ) = 1 ( − 1, respectively)
(1971)
Remarks on a combinatorial problem
G Hetyei (1996)
On the cd\documentclass[12pt]{minimal}Discrete Comput. Geom., 16
D Foata (1973)
173
M Josuat-Vergès (2014)
279Australas. J. Combin., 60
(1966)
A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Arch. Wisk
V. Arnold (1992)
The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groupsRussian Mathematical Surveys, 47
Michael Hoffman (1999)
Derivative Polynomials, Euler Polynomials, and Associated Integer SequencesElectron. J. Comb., 6
D. Dumont (1995)
Further Triangles of Seidel-Arnold Type and Continued Fractions Related to Euler and Springer NumbersAdvances in Applied Mathematics, 16
D. Foata, M. Schützenberger (1973)
CHAPTER 16 – Nombres d'Euler et Permutations Alternantes
D Dumont (1995)
275Adv. Appl. Math., 16
R Ehrenborg, M Readdy (1998)
Coproducts and the cd\documentclass[12pt]{minimal}J. Algebraic Combin., 8
D Foata, M-P Schützenberger, JN Srivastava (1973)
Nombres d?Euler et permutations alternantesA survey of combinatorial theory
H Shin (2021)
2167Electron. Res. Arch., 29
VI Arnol’d (1992)
1Russ. Math. Surv., 47
(iii) x is inserted at the immediate right of a peak, say y , of σ [ j − 1]
RC Entringer (1966)
241Nieuw Arch. Wisk., 14
ME Hoffman (1999)
R21Electron. J. Combin., 6
Y Gelineau (2011)
100Eur. J. Combin, 32
G. Hetyei (1996)
On thecd-variation polynomials of André and simsun permutationsDiscrete & Computational Geometry, 16
Matthieu Josuat-Vergès, J. Novelli, J. Thibon (2011)
The algebraic combinatorics of snakesJ. Comb. Theory, Ser. A, 119
R. Ehrenborg, Margaret Readdy (1998)
Coproducts and the cd-IndexJournal of Algebraic Combinatorics, 8
G Hetyei (1996)
259Discrete Comput. Geom., 16
M Josuat-Vergès (2012)
1613J. Combin. Theory Ser. A, 119
Matthieu Josuat-Vergès (2010)
Enumeration of snakes and cycle-alternating permutationsAustralas. J Comb., 60
Heesung Shin, J. Zeng (2020)
More bijections for Entringer and Arnold familiesElectronic Research Archive
RC Entringer (1966)
A combinatorial interpretation of the Euler and Bernoulli numbersNieuw Arch. Wisk., 14
For the calculation of Springer numbers (of root systems) of type Bn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B_n$$\end{document} and Dn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$D_n$$\end{document}, Arnold introduced a signed analogue of alternating permutations, called βn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta _n$$\end{document}-snakes, and derived recurrence relations for enumerating the βn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta _n$$\end{document}-snakes starting with k. The results are presented in the form of double triangular arrays (vn,k\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$v_{n,k}$$\end{document}) of integers, 1≤|k|≤n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$1\le |k|\le n$$\end{document}. An Arnold family is a sequence of sets of such objects as βn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\beta _n$$\end{document}-snakes that are counted by (vn,k)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(v_{n,k})$$\end{document}. As a refinement of Arnold’s result, we give analogous arrays of polynomials, defined by recurrence, for the calculation of the polynomials associated with successive derivatives of tanx\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\tan x$$\end{document} and secx\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sec x$$\end{document}, established by Hoffman. Moreover, we provide some new Arnold families of combinatorial objects that realize the polynomial arrays, which are signed variants of André permutations and Simsun permutations.
Arnold Mathematical Journal – Springer Journals
Published: Jun 1, 2023
Keywords: Euler number; Springer number; Alternating permutation; Signed permutation; Primary 05A19; Secondary 05A05; 05A15
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.