Sorption of ionic and neutral species of pharmaceuticals to loessial soil amended with biochars

Sorption of ionic and neutral species of pharmaceuticals to loessial soil amended with biochars To clarify the impact of biochar amendment on soil sorption for coexisting pharmaceuticals, wheat straw-derived biochars pyrolyzed at 300 and 700 °C (labeled as WS300 and WS700, respectively) were prepared. Batch experiments on ketoprofen (KTP), atenolol (ATL) and carbamazepine (CBZ) sorption to biochars, loessial soil and biochar-amended soils were conducted. The results indicated that sorption affinity of different species of pharmaceuticals to WS300 and WS700 was in the order of cationic ATL > neutral CBZ > anionic KTP. Cationic ATL had the highest sorption to biochars due to electrostatic attraction. Coexisting ATL, CBZ and KTP competed for the shared adsorption sites on carbonized phase of biochars, and π–π interactions were proposed to be the main sorption mechanism. Sorption coefficients (K d) and nonlinearity of ATL, CBZ and KTP to soil increased when biochar was added (5% by weight), especially for WS700 with higher specific surface area. K d values of the three pharmaceuticals to WS700-amended soil in either single solute or bisolute system were one to two orders of magnitude higher than those to soil, indicating the promoting role of WS700 in sorption of coexisting pharmaceuticals in soil. The study demonstrated the enhanced and competitive sorption of ionic and neutral species of pharmaceuticals to soil amended with biochars, which is helpful in designing biochar as effective sorbents for immobilization of pharmaceuticals in soil remediation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Sorption of ionic and neutral species of pharmaceuticals to loessial soil amended with biochars

Loading next page...
 
/lp/springer-journals/sorption-of-ionic-and-neutral-species-of-pharmaceuticals-to-loessial-IfQizt23gW
Publisher
Springer Journals
Copyright
Copyright © 2019 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
DOI
10.1007/s11356-019-06721-7
Publisher site
See Article on Publisher Site

Abstract

To clarify the impact of biochar amendment on soil sorption for coexisting pharmaceuticals, wheat straw-derived biochars pyrolyzed at 300 and 700 °C (labeled as WS300 and WS700, respectively) were prepared. Batch experiments on ketoprofen (KTP), atenolol (ATL) and carbamazepine (CBZ) sorption to biochars, loessial soil and biochar-amended soils were conducted. The results indicated that sorption affinity of different species of pharmaceuticals to WS300 and WS700 was in the order of cationic ATL > neutral CBZ > anionic KTP. Cationic ATL had the highest sorption to biochars due to electrostatic attraction. Coexisting ATL, CBZ and KTP competed for the shared adsorption sites on carbonized phase of biochars, and π–π interactions were proposed to be the main sorption mechanism. Sorption coefficients (K d) and nonlinearity of ATL, CBZ and KTP to soil increased when biochar was added (5% by weight), especially for WS700 with higher specific surface area. K d values of the three pharmaceuticals to WS700-amended soil in either single solute or bisolute system were one to two orders of magnitude higher than those to soil, indicating the promoting role of WS700 in sorption of coexisting pharmaceuticals in soil. The study demonstrated the enhanced and competitive sorption of ionic and neutral species of pharmaceuticals to soil amended with biochars, which is helpful in designing biochar as effective sorbents for immobilization of pharmaceuticals in soil remediation.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Nov 9, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off