Soil moisture dynamics of calcareous grassland under elevated CO2

Soil moisture dynamics of calcareous grassland under elevated CO2 Water relations of nutrient-poor calcareous grassland under long-term CO2 enrichment were investigated. Understanding CO2 effects on soil moisture is critical because productivity in these grasslands is water limited. In general, leaf conductance was reduced at elevated CO2, but responses strongly depended on date and species. Evapotranspiration (measured as H2O gas exchange) revealed only small, non-significant reductions at elevated CO2, indicating that leaf conductance effects were strongly buffered by leaf boundary layer and canopy conductance (leaf area index was not or only marginally increased under elevated CO2). However, these minute and non-significant responses of water vapour loss accumulated over time and resulted in significantly higher soil moisture in CO2-enriched plots (gravimetric spot measurements and continuous readings using a network of time-domain reflectometry probes). Differences strongly depended on date, with the smallest effects when soil moisture was very high (after heavy precipitation) and effects were largest at intermediate soil moisture. Elevated CO2 also affected diurnal soil moisture courses and rewetting of soils after precipitation. We conclude that ecosystem-level controls of the water balance (including soil feedbacks) overshadow by far the physiological effects observed at the leaf level. Indirect effects of CO2 enrichment mediated by trends in soil moisture will have far-ranging consequences on plant species composition, soil bacterial and faunal activity as well as on soil physical structure and may indirectly also affect hydrology and trace gas emissions and atmospheric chemistry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oecologia Springer Journals

Soil moisture dynamics of calcareous grassland under elevated CO2

Oecologia, Volume 117 (2) – Nov 17, 1998

Loading next page...
 
/lp/springer-journals/soil-moisture-dynamics-of-calcareous-grassland-under-elevated-co2-vGx50L1xwD
Publisher
Springer Journals
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Ecology; Plant Sciences; Hydrology/Water Resources
ISSN
0029-8549
eISSN
1432-1939
DOI
10.1007/s004420050649
Publisher site
See Article on Publisher Site

Abstract

Water relations of nutrient-poor calcareous grassland under long-term CO2 enrichment were investigated. Understanding CO2 effects on soil moisture is critical because productivity in these grasslands is water limited. In general, leaf conductance was reduced at elevated CO2, but responses strongly depended on date and species. Evapotranspiration (measured as H2O gas exchange) revealed only small, non-significant reductions at elevated CO2, indicating that leaf conductance effects were strongly buffered by leaf boundary layer and canopy conductance (leaf area index was not or only marginally increased under elevated CO2). However, these minute and non-significant responses of water vapour loss accumulated over time and resulted in significantly higher soil moisture in CO2-enriched plots (gravimetric spot measurements and continuous readings using a network of time-domain reflectometry probes). Differences strongly depended on date, with the smallest effects when soil moisture was very high (after heavy precipitation) and effects were largest at intermediate soil moisture. Elevated CO2 also affected diurnal soil moisture courses and rewetting of soils after precipitation. We conclude that ecosystem-level controls of the water balance (including soil feedbacks) overshadow by far the physiological effects observed at the leaf level. Indirect effects of CO2 enrichment mediated by trends in soil moisture will have far-ranging consequences on plant species composition, soil bacterial and faunal activity as well as on soil physical structure and may indirectly also affect hydrology and trace gas emissions and atmospheric chemistry.

Journal

OecologiaSpringer Journals

Published: Nov 17, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off