SNPs in the bovine IL-10 receptor are associated with somatic cell score in Canadian dairy bulls

SNPs in the bovine IL-10 receptor are associated with somatic cell score in Canadian dairy bulls Altering the balance between pro- and anti-inflammatory responses can influence an animal’s susceptibility to acute or chronic inflammatory disease; bovine mastitis is no exception. Genetic variation in the form of single nucleotide polymorphisms (SNPs) may alter the function and expression of genes that regulate inflammation, making them important candidates for defining an animal’s risk of developing acute or chronic mastitis. The objective of the present study was to identify SNPs in genes that regulate anti-inflammatory responses and test their association with estimated breeding values (EBVs) for somatic cell score (SCS), a trait highly correlated with the incidence of mastitis. These genes included bovine interleukin-10 (IL-10) and its receptor (IL-10R), and transforming growth factor β1 (TGF-β1) and its receptor (TGF-βR). Sequencing-pooled DNA allowed for the identification of SNPs in IL-10 (n = 2), IL-10Rα (n = 6) and β (n = 2), and TGF-β1 (n = 1). These SNPs were subsequently genotyped in a cohort of Holstein (n = 500), Jersey (n = 83), and Guernsey (n = 50) bulls. Linear regression analysis identified significant SNP effects for IL-10Rα 1185C>T with SCS. Haplotype IL-10Rα AAT showed a significant effect on increasing SCS compared to the most common haplotype. The results presented here indicate that SNPs in IL-10Rα may contribute to variation in the SCS of dairy cattle. Although functional studies are necessary to ascertain whether these SNPs are causal polymorphisms or merely in linkage with the true causal SNP(s), a selection program incorporating these markers could have a beneficial influence on the average SCS and productivity of a dairy herd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

SNPs in the bovine IL-10 receptor are associated with somatic cell score in Canadian dairy bulls

Loading next page...
 
/lp/springer-journals/snps-in-the-bovine-il-10-receptor-are-associated-with-somatic-cell-IM670hHhjm
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-009-9198-1
Publisher site
See Article on Publisher Site

Abstract

Altering the balance between pro- and anti-inflammatory responses can influence an animal’s susceptibility to acute or chronic inflammatory disease; bovine mastitis is no exception. Genetic variation in the form of single nucleotide polymorphisms (SNPs) may alter the function and expression of genes that regulate inflammation, making them important candidates for defining an animal’s risk of developing acute or chronic mastitis. The objective of the present study was to identify SNPs in genes that regulate anti-inflammatory responses and test their association with estimated breeding values (EBVs) for somatic cell score (SCS), a trait highly correlated with the incidence of mastitis. These genes included bovine interleukin-10 (IL-10) and its receptor (IL-10R), and transforming growth factor β1 (TGF-β1) and its receptor (TGF-βR). Sequencing-pooled DNA allowed for the identification of SNPs in IL-10 (n = 2), IL-10Rα (n = 6) and β (n = 2), and TGF-β1 (n = 1). These SNPs were subsequently genotyped in a cohort of Holstein (n = 500), Jersey (n = 83), and Guernsey (n = 50) bulls. Linear regression analysis identified significant SNP effects for IL-10Rα 1185C>T with SCS. Haplotype IL-10Rα AAT showed a significant effect on increasing SCS compared to the most common haplotype. The results presented here indicate that SNPs in IL-10Rα may contribute to variation in the SCS of dairy cattle. Although functional studies are necessary to ascertain whether these SNPs are causal polymorphisms or merely in linkage with the true causal SNP(s), a selection program incorporating these markers could have a beneficial influence on the average SCS and productivity of a dairy herd.

Journal

Mammalian GenomeSpringer Journals

Published: Jul 30, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off